C O M M U N I C A T I O N S
Acknowledgment. This work was supported primarily by the
Nanoscale Science and Engineering Initiative of the National
Science Foundation (NSF) under NSF Award Number CHE-
0117752 and by the New York State Office of Science, Technology,
and Academic Research (NYSTAR). This work has used the shared
experimental facilities that are supported primarily by the MRSEC
Program of the NSF. We thank Prof. J. Norton for use of the CV
equipment. I.W.T. thanks the NSF for a predoctoral fellowship.
Supporting Information Available: Experimental details for the
synthesis of 1a-d; Pt film evaporation, XPS of Pt films, nanoparticle
IR, and solution and SAM CV experimental details. This material is
Figure 2. Representative overlaid transmission infrared spectrum of 1b
on CaF2 before treatment with platinum nanoparticles (2118 cm-1) and after
platinum nanoparticles (2170 cm-1). The isocyanide region is shown on
the left, and the unperturbed thiophene region is shown on the right.
References
(1) (a) Cornil, J.; Beljonne, D.; Parente, V.; Lazzaroni, R.; Bre´das, J. L. In
Handbook of Oligo- and Polythiophenes; Fichou, D., Ed.; Wiley-VCH:
Weinheim, Germany, 1999; pp 317-360. (b) Cornil, J.; Beljonne, D.;
Bre´das, J. L. In Electronic Materials: The Oligomer Approach; Mu¨llen,
K., Wegner, G., Eds.; Wiley-VCH: Weinheim, Germany, 1998; pp 432-
447. (c) Robertson, N.; McGowan, C. A. Chem. Soc. ReV. 2003, 32, 96-
103. (d) Otsubo, T.; Aso, Y.; Takimiya, K. Bull. Chem. Soc. Jpn. 2001,
74, 1789-1801.
(2) Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie,
C. D. AdV. Mater. 2003, 15, 1881-1890.
(3) (a) Beebe, J. M.; Engelkes, V. B.; Miller, L. L.; Frisbie, C. D. J. Am.
Chem. Soc. 2002, 124, 11268-11269. (b) Cheng, L.; Yang, J.; Yao, Y.;
Price, D. W., Jr.; Dirk, S. M.; Tour, J. M. Langmuir 2004, 20, 1335-
1341.
Figure 3. Plot of logarithm of the ratio of XPS signal intensity of carbon
to Pt4d electrons (b) and Pt4f electrons (2) against the number of rings in
1a-d. Lines shown are the respective linear regression fits of each data
set. Each data point is the average of three measurements in different areas
of the surface; error bars are not visible at this scale.
(4) Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.; Naciri, J.; Holt, D. B.;
Ratner, M. A.; Shashidhar, R. Ann. N.Y. Acad. Sci. 2003, 1006, (Molecular
Electronics III), 277-290.
(5) Heath, J. R.; Ratner, M. A. Phys. Today 2003, 56, 43-49.
(6) Zhitenev, N. B.; Erbe, A.; Bao, Z. Phys. ReV. Lett 2004, 92, 186805/1-
186805/4.
organic solvent soluble platinum nanoparticles,14 indicating the
formation of an isocyanide-platinum bond (Figure 2). Isocyanide
functionality also proved to be essential for effective coverage of
platinum surfaces from X-ray photoelectron spectroscopy (XPS)
analysis of oligothiophenes 1a-d deposited on evaporated Pt films,
suggesting chemisorption through isocyanide-platinum coupling
rather than nonspecific modes of surface deposition.
XPS further revealed a positive correlation between molecular
size and film thickness15 (Table 1, Figure 3); the longer the
oligothiophene, the larger the ratio between the carbon (molecule)
signal and the substrate (Pt) signal. The relationship between film
thickness and calculated molecular length indicates that these
oligothiophenes deposit on platinum with a tilt angle of ∼41° from
the surface normal (assuming a constant angle for all molecules).
This significant tilt differs from the reported near normal orientation
of unalkylated thiophene thiols on gold.16
Without alkylation, 2-D assembly is dominated by π-stacking,
which forces the backbone in an upright configuration for maximal
surface burial. Both the IR and XPS results support a Pt surface
binding model in which the substituted oligothiophenes are surface-
bound by an isocyanide-Pt bond, and the molecular backbone
projects away from the surface rather than adhering to it, rendering
this class of molecule suitable for many electronic device configu-
rations. Understanding molecular orientation on the metal surface
is key to designing molecule-bridged junctions, and these experi-
ments taken together detail the first description of the ability and
manner in which these soluble oligothiophenes, of a range of
lengths, chemisorb onto platinum surfaces. This new context for
the well-studied conducting thiophene backbone lays the foundation
for future study of oligothiophenes as single molecular wires and
semiconducting organic monolayers with platinum-based devices.
(7) (a) Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. Nature 2000,
408, 67-69. (b) Hassenkam, T.; Norgaard, K.; Iversen, L.; Kiely, C. J.;
Brust, M.; Bjornholm, T. AdV. Mater. 2002, 14, 1126-1130. (c) Liu, J.;
Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Fre´chet, J. M. J. J. Am. Chem.
Soc. 2004, 126, 6550-6551.
(8) (a) Bao, Z.; Chan, W. K.; Yu, L. J. Am. Chem. Soc. 1995, 117, 12426-
12435. (b) Kirschbaum, T.; Azumi, R.; Mena-Osteritz, E.; Ba¨uerle, P.
New J. Chem. 1999, 23, 241-250. (c) Apperloo, J. J.; Janssen, R. A. J.;
Malenfant, P. R. L.; Groenendaal, L.; Fre´chet, J. M. J. J. Am. Chem. Soc.
2000, 122, 7042-7051.
(9) (a) Roncali, J.; Garreau, R.; Yassar, A.; Marque, P.; Garnier, F.; Lemaire,
M. J. Phys. Chem. 1987, 91, 6706-6714. (b) McCullough, R. D.; Lowe,
R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904-
912.
(10) Baldwin, J. E.; O’Neil, I. A. Synlett 1990, 603-604.
(11) (a) Nakanishi, H.; Sumi, N.; Aso, Y.; Otsubo, T. J. Org. Chem. 1998, 63,
8632-8633. (b) Nakanishi, H.; Aso, Y.; Otsubo, T. Synth. Met. 1999,
101, 604-605. (c) Izumi, T.; Kobashi, S.; Takimiya, K.; Aso, Y.; Otsubo,
T J. Am. Chem. Soc. 2003, 125, 5286-5287. (d) Otsubo, T.; Aso, Y.;
Takimiya, K.; Nakanishi, H.; Sumi, N. Synth. Met. 2003, 133-134, 325-
328.
(12) (a) Van Haare, J. A. E. H.; Havinga, E. E.; Van Dongen, J. L. J.; Janssen,
R. A. J.; Cornil, J.; Bre´das, J.-L. Chem.-Eur. J. 1998, 4, 1509-1522.
(b) Ba¨uerle, P.; Fischer, T.; Bidlingmeier, B.; Stabel, A.; Rabe, J. P. Angew.
Chem., Int. Ed. Engl. 1995, 34, 303-307. (c) Ba¨uerle, P.; Segelbacher,
U.; Maier, A.; Mehring, M. J. Am. Chem. Soc. 1993, 115, 10217-10223.
(d) Nessakh, B.; Horowitz, G.; Garnier, F.; Deloffre, F.; Srivastava, P.;
Yassar, A. J. Electroanal. Chem. 1995, 399, 97-103.
(13) Domagala, W.; Lapkowski, M.; Guillerez, S.; Bidan, G. Electrochim. Acta
2003, 48, 2379-2388.
(14) Horswell, S. L.; Kiely, C. J.; O’Neil, I. A.; Schiffrin, D. J. J. Am. Chem.
Soc. 1999, 121, 5573-5574.
(15) (a) Noble-Luginbuhl, A. R.; Nuzzo, R. G. Langmuir 2001, 17, 3937-
3944. (b) Lesiak, B.; Kosinski, A.; Jablonski, A.; Ko¨ve´r, L.; To´th, J.;
Varga, D.; Cserny, I.; Zagorska, M.; Kulszewicz-Bajer, I.; Gergely, G.
Appl. Surf. Sci. 2001, 174, 70-85.
(16) (a) Liedberg, B.; Yang, Z.; Engquist, I.; Wirde, M.; Gelius, U.; Goetz,
G.; Baeuerle, P.; Rummel, R. M.; Ziegler, C.; Goepel, W. J. Phys. Chem.
B 1997, 101, 5951-5962. (b) de Boer, B.; Meng, H.; Perepichka, D. F.;
Zheng, J.; Frank, M. M.; Chabal, Y. J.; Bao, Z. Langmuir 2003, 19,
4272-4284.
JA045904P
9
J. AM. CHEM. SOC. VOL. 126, NO. 38, 2004 11797