C O M M U N I C A T I O N S
Scheme 1. Ru-Catalyzed AROM/CM of Less Reactive Substrates
in the Absence of Solvent (<2% Conversion in Solution)
reduction of 11 and functionalization of the resulting syn-1,3-diol
lead to homoallylic alcohol 30 (via 29), an intermediate employed
in a recent asymmetric synthesis of natural product 31.17 The fully
functionalized pyran 33, obtained in 80% ee (9:1 E:Z) by Ru-
catalyzed AROM/CM of 32 with styrene (neat) can be converted
to optically enriched diol 34, a synthon for the total synthesis of
natural polypropionates,18 as a single diastereomer and olefin regio-
and stereoisomer.
Future studies will include the synthesis and development of more
effective chiral Ru catalysts for olefin metathesis, examination of
the mechanism of these and related catalytic asymmetric processes,
as well as applications of the newly developed protocols to total
synthesis of complex molecules.
Acknowledgment. Financial support was provided by the NSF
(CHE-0213009). We thank Materia, Inc., for gifts of Ru complexes
and J. J. Van Veldhuizen, G. A. Cortez, and M. K. Brown for
helpful suggestions. We are grateful to K. S. Griswold for assistance
in determining the X-ray structure of Ru complex 1b.
Scheme 2. Representative Functionalizations of AROM/CM
Products
Supporting Information Available: Experimental procedures and
spectral and analytical data for reaction products (PDF). This material
References
(1) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int., Ed. 2003, 42, 4592-
4633.
(2) (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A.
H. J. Am. Chem. Soc. 2002, 124, 4954-4955. (b) Van Veldhuizen, J. J.;
Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 12502-12508. See also: (c) Seiders, T. J.; Ward,
D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225-3228.
(3) Handbook of Olefin Metathesis; Grubbs, R. H., Ed.; VCH-Wiley:
Wienheim, 2003, and references therein.
(4) Schrader, T. O.; Snapper, M. L. In Handbook of Olefin Metathesis; Grubbs,
R. H., Ed.; VCH-Wiley: Wienheim, 2003; Vol. 2, pp 205-237.
(5) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104, 2199-2238.
(6) For representative synthetic approaches, see: (a) Vares, L.; Rein, T. Org.
Lett. 2000, 2, 2611-2614. (b) Kopeky, D. J.; Rychnovsky, S. D. J. Am.
Chem. Soc. 2001, 123, 8420-8421. (c) Keck, G. E.; Covel, J. A.; Schiff,
T.; Yu, T. Org. Lett. 2002, 4, 1189-1192. (d) Smith, A. B.; Safonov, I.
G.; Corbett, R. M. J. Am. Chem. Soc. 2002, 124, 11102-11113. (e) Evans,
P. A.; Cui, J.; Gharpure, S. J.; Hinkle, R. J. J. Am. Chem. Soc. 2003, 125,
11456-11457.
(7) For representative examples, see: (a) Evans, D. A.; Carter, P. H.; Carreira,
E. M.; Charette, A. B.; Prunet, J. A.; Lautens, M. L. J. Am. Chem. Soc.
1999, 121, 7540-7552. (b) Hornberger, K. R.; Hamblett, C. L.; Leighton,
J. L. J. Am. Chem. Soc. 2000, 122, 12894-12895. (c) Hoye, T. R.; Hu,
M. J. Am. Chem. Soc. 2003, 125, 9576-9577.
(8) For nonasymmetric variants of the present class of reactions, see: Wright,
D. L.; Usher, L. C.; Estrella-Jimenez, M. Org. Lett. 2001, 3, 4275-4277.
(9) (a) Buchs, P.; Ganter, C. HelV. Chem. Acta 1980, 63, 1420-1424. (b)
Kim, H.; Hoffmann, H. M. R. Eur. J. Org. Chem. 2000, 2195-2201 and
references therein. (c) Ashcroft, M. R.; Hoffman, H. M. R. In Organic
Syntheses, Coll. Vol. VI; Noland, W. E., Ed.; J. Wiley: New York, 1988;
pp 512-516.
(10) For a recent review on the utility of this class of oxabicycles in synthesis,
see: Hartung, I. V.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. 2004,
43, 1934-1949.
with 2 mol % 1a, in the absence of solvent, oxabicycles 21, 23,
and 25 readily undergo AROM/CM to afford 22, 24, and 2614 in
<2 h in 93, 80, and 80% ee, respectively. Furthermore, when the
less reactive 1b is used (2 mol %), >98% conversion is achieved
in longer reaction times but with notably higher enantioselectivity
(98, 94, and 93%, respectively).15
Optically enriched pyrans obtained through the present catalytic
protocol can be functionalized with excellent regioselectivity in a
variety of ways. The sequence illustrated in Scheme 2 involving
the conversion of 4a to primary alcohol 28, an intermediate
synthesized previously in the course of a total synthesis of
leucascandrolide,16 is one case in point. In addition to enantio-
selective synthesis of pyrans, the Ru-catalyzed protocol provides
access to highly functionalized acyclic building blocks that can be
used in the synthesis of biologically active compounds. Two
representative cases are depicted in Scheme 2. Dissolving metal
(11) When o-bromostyrene is used, only polymerization of 2a is observed.
(12) Oligomerization of substrate occurs in these reactions; optimal yields are
obtained by slow addition of 2a to a mixture of 1a and the aliphatic olefin.
(13) (a) Kingsbury, J. S.; Harrity, J. P. A.; Hoveyda, A. H. J. Am. Chem. Soc.
1999, 121, 791-799. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179. (c) Hoveyda,
A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S.
B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biol. Chem. 2004, 2, 8-23.
(14) Secondary alkyl halides can be readily functionalized by metal-catalyzed
cross-coupling reactions. See: Powell, D. A.; Fu, G. C. J. Am. Chem.
Soc. 2004, 126, 7788-7789 and references therein.
(15) Effective dissolution of substrates was achieved with 5 equiv of 3a. Control
experiments indicate that high conversion is not due to increased amounts
of 3a (5 vs 2 equiv).
(16) Paterson, I.; Tudge, M. Tetrahedron 2003, 59, 6833-6849.
(17) Tosaki, S.; Nemoto, T.; Ohshima, T.; Shibasaki, M. Org. Lett. 2003, 5,
495-498.
(18) For representative examples, see: (a) Danishefsky, S. J.; Selnick, H. G.;
Zelle, R. E.; DeNinno, M. P. J. Am. Chem. Soc. 1988, 110, 4368-4378.
(b) Ziegler, F. E.; Becker, M. R. J. Org. Chem. 1990, 55, 2800-2805.
JA0458672
9
12290 J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004