Microbial Baeyer–Villiger Oxidation of Prochiral Polysubstituted Cyclohexanones
FULL PAPER
[18] N. Berezina, V. Alphand, R. Furstoss, Tetrahedron
Asymm.2002, 13, 1953–1955.
[19] S. D. Doig, P. J. Avenell, P. A. Bird, P. Gallati, K. S. Lander,
G. J. Lye, R. Wohlgemuth, J. M. Woodley, Biotechnol.
Prog.2002, 18, 1039–1046.
[20] V. Alphand, G. Carrea, R. Wohlgemuth, R. Furstoss, J. M.
Woodley, Trends Biotechnol. 2003, 21, 318–323.
[21] a) M. Griffin, P. W. Trudgill, Eur. J. Biochem.1976, 63, 199–
209; b) P. W. Trudgill, Methods Enzymol.1990, 88, 77–81.
[22] H. Iwaki, Y. Hasegawa, P. C. K. Lau, S. Wang, M. M. Kayser,
Appl. Environ. Microbiol.2002, 68, 5681–5684.
[23] H. Sandy, A. J. Willetts, Biotechnol. Lett.1989, 2, 615–620.
[24] M. T. Bes, R. Villa, S. M. Roberts, P. W. H. Wan, A. J. Willetts,
J. Mol. Catal. B: Enzym.1996, 1, 127–134.
[25] M. D. Mihovilovic, B. Müller, M. M. Kayser, P. Stanetty, Syn-
lett2002, 700–702.
[26] M. D. Mihovilovic, B. Müller, A. Schulze, P. Stanetty, M. M.
Kayser, Eur. J. Org. Chem. 2003, 2243–2249.
[27] S. Wang, M. M. Kayser, H. Iwaki, P. C. K. Lau, J. Mol. Catal.
B: Enzym.2003, 211–218.
to give lactone 3a (85 mg, 77%) as a colorless oil after column
chromatography (LP/EtOAc, 2:1).[30]1H NMR (CDCl3): δ = 0.96
(d, J = 7.0 Hz, 3 H), 1.11 (d, J = 6.7 Hz, 3 H), 1.78–1.94 (m, 1 H),
2.1 (dd, J1 = 8.8, J2 = 17.2 Hz, 1 H), 2.26–2.52 (m, 2 H), 2.65 (dd,
J1 = 7.4, J2 = 17.2 Hz, 1 H), 3.55–3.65 (m, 2 H), 3.94–4.04 (m, 1
H) ppm. 13C NMR (CDCl3): δ = 12.9 (q), 19.1 (q), 32.8 (d), 36.6
(t), 39.4 (d), 64.2 (t), 88.9 (d), 176.4 (s) ppm.
(4α,5α)-4,5-Dihydro-5-(2-hydroxy-1-methylethyl)-4-methyl-2(3H)-fu-
ranone (3b): Ketone 1b (100 µL, 100 mg, 0.70 mmol) was oxidized
according to the general procedure with CHMO-producing cells
to give lactone 3b (88 mg, 80%) as a pale-yellow oil after column
chromatography (LP/EtOAc, 2:1). 1H NMR (CDCl3): δ = 1.01–
1.14 (m, 6 H), 1.94–2.31 (m, 3 H), 2.61–2.81 (m, 2 H), 3.51–3.69
(m, 2 H), 4.36–4.45 (m, 1 H) ppm. 13C NMR (CDCl3): δ = 15.5
(q), 14.0 (q), 32.7 (d), 35.6 (t), 38.3 (d), 64.4 (t), 84.8 (d), 177.0 (s)
ppm, C8H14O3 (158.2): calcd. C 60.74, H 8.92; found C 60.83, H
8.89.
[28] M. D. Mihovilovic, G. Chen, S. Wang, B. Kyte, F. Rochon,
M. M. Kayser, J. D. Stewart, J. Org. Chem.2001, 733–738.
[29] M. D. Mihovilovic, B. Müller, M. M. Kayser, J. D. Stewart, P.
Stanetty, Synlett2002, 703–706.
Acknowledgments
[30] M. Taschner, D. J. Black, J. Am. Chem. Soc.1988, 110, 6892–
6893.
This project was funded by the Austrian Science Fund (FWF –
grant no. P16373). Contributions by Baxter Immuno Austria and
Novartis Donation and Sponsoring are gratefully acknowledged.
We thank Dr. Erwin Rosenberg (Vienna University of Technology)
for his assistance in the determination of enantiomeric purity.
[31] M. J. Taschner, A. S. Aminbhavi, Tetrahedron Lett.1989, 30,
1029–1032.
[32] F. Yokokawa, Y. Hamada, T. Shioiri, Chem. Commun. 1996,
871–872.
[33] D. J. Duchamp, A. R. Branfman, A. C. Button, K. L. Rine-
hart, J. Am. Chem. Soc. 1973, 95, 4077–4078.
[34] a) R. K. Boeckmann, J. E. Starrett, D. G. Nickell, P.-E. Sum,
J. Am. Chem. Soc. 1986, 108, 5549–5559; b) C. Neukom, D. P.
Richardson, J. H. Myerson, P. A. Bartlett, J. Am. Chem. Soc.
1986, 108, 5559–5568; c) P. DeShong, S. Ramesh, V. Elango,
J. Perez, J. Am. Chem. Soc. 1985, 107, 5219–5224; d) R. H.
Schlessinger, G. R. Berberwitz, P. Lin, J. Am. Chem. Soc. 1985,
107, 1777–1778; e) S. F. Martin, C. Gluchowski, C. L.
Campbell, R. C. Chapman, J. Org. Chem. 1984, 49, 2512–2513;
f) F. E. Ziegler, R. T. Wester, Tetrahedron Lett. 1984, 25, 617–
620; g) F. E. Ziegler, J. K. Thottathil, Tetrahedron Lett. 1981,
22, 4883–4886; h) R. E. Ireland, P. G. Wuts, B. Ernst, J. Am.
Chem. Soc. 1981, 103, 3205–3207.
[1] a) G. R. Krow, Org. React.1993, 43, 251–798; b) M. Renz, B.
Meunier, Eur. J. Org. Chem.1999, 737–750; c) M. D. Mihovi-
lovic, F. Rudroff, B. Grötzl, Curr. Org. Chem.2004, 8, 1057–
1069.
[2] C. Bolm, in Peroxide Chemistry (Ed.: W. Adam), Wiley-VCH,
Weinheim, 2000, 494–510 and references cited therein.
[3] C. T. Walsh, Y.-C. J. Chen, Angew. Chem. 1988, 100, 342–352.
[4] S. M. Roberts, P. W. H. Wan, J. Mol. Catal. B: Enzym. 1998,
4, 111–136.
[5] M. D. Mihovilovic, B. Müller, P. Stanetty, Eur. J. Org. Chem.
2002, 3711–3730.
[6] N. M. Kamerbeek, D. B. Janssen, W. J. H. van Berkel, M. W.
Fraaije, Adv. Synth. Catal.2003, 345, 667–678.
[7] N. A. Donoghue, D. B. Norris, P. W. Trudgill, Eur. J. Biochem.
1976, 63, 175–192.
[35]
[36]
[37]
[38]
[39]
E. Malito, A. Alfieri, M. W. Fraaije, M. Mattevi, Proc. Nat.
Acad. Sci. USA2004, 101, 13157–13162.
M. J. Taschner, L. Peddada, P. Cyr, Q. Z. Chen, D. J. Black,
NATO ASI Ser., Ser. C1992, 381, 347–360.
V. Alphand, R. Furstoss, Tetrahedron: Asymmetry1992, 3, 379–
382.
D. R. Kelly, C. J. Knowles, J. G. Mahdi, I. N. Taylor, M. A.
Wright, J. Chem. Soc., Chem. Commun.1995, 729–730.
D. R. Kelly, C. J. Knowles, J. G. Mahdi, M. A. Wright, I. N.
Taylor, D. E. Hibbs, M. B. Hursthouse, A. K. Mish’al, S. M.
Roberts, P. W. H. Wan, G. Grogan, A. J. Willets, J. Chem. Soc.,
Perkin Trans. 1 1995, 2057–2066.
[8] J. D. Stewart, Curr. Org. Chem. 1988, 2, 195–216.
[9] S. Colonna, N. Gaggero, C. Richelmi, P. Pasta, NATO Sci. Ser.
1 2000, 33, 133–160.
[10] G. Chen, M. M. Kayser, M. D. Mihovilovic, M. E. Mrstik,
C. A. Martinez, J. D. Stewart, New J. Chem.1999, 23, 827–832.
[11] For another recombinant E. coli overexpression system for
CHMO applied in whole-cell biocatalysis see: a) D. S. Doig,
M. L. O’Sullivan, S. Patel, J. M. Ward, J. M. Woodley, Enzyme
Microb. Technol.2001, 28, 265–274; b) D. S. Doig, H. Simpson,
V. Alphand, R. Furstoss, M. J. Woodley, Enzyme Microb. Tech-
nol.2003, 32, 347–355.
[40]
[41]
[42]
[43]
[44]
J. D. Stewart, K. W. Reed, C. A. Martinez, J. Zhu, G. Chen,
M. M. Kayser, J. Am. Chem. Soc.1998, 120, 3541–3548.
A. Soderquist, J. C. Facelli, W. J. Horton, D. M. Grant, J. Am.
Chem. Soc. 1995, 117, 8441–8446.
M. Franck-Neumann, M. Miesch, B. Barth, Tetrahedron1993,
49, 1409–1420.
P. Stanetty, M. D. Mihovilovic, K. Mereiter, H. Völlenkle, F.
Renz, Tetrahedron1998, 54, 875–894.
R. K. Boeckmann, J. Starrett, Jr., D. G. Nickell, Jr., P.-E. Sum,
J. Am. Chem. Soc.1986, 108, 5549–5559.
[12] J. D. Stewart, K. W. Reed, M. M. Kayser, J. Chem. Soc., Perkin
Trans. 11996, 755–757.
[13] J. D. Stewart, W. R. Kieth, J. Zhu, G. Chen, M. M. Kayser, J.
Org. Chem.1996, 61, 7652–7653.
[14] M. M. Kayser, G. Chen, J. D. Stewart, J. Org. Chem.1998, 63,
7103–7106.
[15] S. Rissom, U. Schwarz-Linek, M. Vogel, V. I. Tishkov, U.
Kragl, Tetrahedron: Asymmetry 1997, 8, 2523–2526.
[16] H. D. Simpson, V. Alphand, R. Furstoss, J. Mol. Catal. B: En-
zym.2001, 16, 101–109.
[17] Z. A. Walton, J. D. Stewart, Biotechnol. Prog.2002, 18, 262–
268.
[45]
[46]
A. K. Bose, B. Lal, Tetrahedron Lett. 1973, 40, 3937–3940.
C. Gennari, C. T. Hewkin, F. Molinari, A. Bernardi, A. Com-
otti, J. M. Goodman, I. Paterson, J. Org. Chem1992, 57, 5173–
5177.
Eur. J. Org. Chem. 2005, 809–816
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
815