SCHEME 1. Synthesis of Oxazolines via Haloamidation
Reaction
Stereoselective One-Pot Synthesis of Oxazolines
Saumen Hajra,* Sukanta Bar, Debarshi Sinha, and
Biswajit Maji
Department of Chemistry, Indian Institute of Technology,
Kharagpur 721302, India
ReceiVed February 18, 2008
TABLE 1. Synthesis of Oxazoline 3a from Stilbene 1a
Treatment of alkenes with NBS, a nitrile, NaHCO3 and water
in the presence of Cu(OTf)2 or Zn(OTf)2 is reported to
furnish oxazolines in one pot and good yields. The reaction
is equally applicable to chalcones.
entry
MLn
none
conv (%)a
yield of 3a (%)a
1
2
0
0
0
0
NiCl2
3
MgCl2
0
0
4
5
6
7
8
9
10
11
12
13
Mg(OTf)2
Cu2Cl2
0
0
<5
<5
<10
<15
<15
40 (35)
40 (35)
66 (15)
67 (15)
10
25
30
32
35
100
100
100
100
Oxazolines are frequently found in biologically active natural
products and pharmaceuticals.1,2 Their chiral derivatives are
widely used as ligands or chiral pools in asymmetric synthesis.3
Achiral oxazolines are also valuable intermediates in organic
synthesis4 and polymer chemistry.5 Consequently, many meth-
ods exist in the literature for their synthesis.6– 8 The majority
Sm(OTf)3
Yb(OTf)3
Y(OTf)3
Sc(OTf)3
FeCl3
CuCl2
Zn(OTf)2
Cu(OTf)2
(1) (a) Bergeron, R. J. Chem. ReV. 1984, 84, 587–602. (b) Davidson, B. S.
Chem. ReV. 1993, 93, 1771–1791. (c) Penke, B.; Toth, G.; Varadi, G. Amino
Acids, Peptides, Proteins 2006, 35, 129–271. (d) Hsiue, G.-H.; Wang, C.-H.;
Lo, C.-L.; Wang, C.-H.; Li, J.-P.; Yang, J.-L. Int. J. Pharm. 2006, 317, 69–75.
(2) (a) Nicolaou, K. C.; Liazos, D. E.; Kim, D. W.; Schlawe, D.; de Noronha,
R. G.; Longbottom, D. A.; Rodriguez, M.; Bucci, M.; Cirino, G. J. Am. Chem.
Soc. 2006, 128, 4460–4470. (b) Pirrung, M. C.; Tumey, L. N.; McClerren, A. L.;
Ratz, C. R. H. J. Am. Chem. Soc. 2003, 125, 1575–1586. (c) Bode, H. B.; Irsch,
H.; Wenzel, S. C.; Reichenbach, H.; Muller, R.; Hofle, G. J. Nat. Prod. 2003,
66, 1203–1206. (d) Kline, T.; Anderson, N. H.; Harwood, E. A.; Bowman, J.;
Malanda, A.; Endsley, S.; Erwin, A. l.; Doyle, M.; Fong, S.; Harris, A. L.;
Mendelsohn, B.; Mdluli, K.; Raetz, C. R. H.; Stover, C. K.; Witte, P. R.;
Yabannavar, A.; Zhu, S J. Med. Chem. 2002, 45, 3112–3129.
a Determined from the 1H NMR spectra of the crude reaction mixture
with succinic anhydride as an internal standard; yields in the parentheses
refer to the yield of dibromide of trans-stilbene.
of the methods involve prior preparation of precursor 1,2-amino
alcohols.6 Recently, multicomponent reactions have been re-
ported for the synthesis.7 Alternatively, oxazolines are prepared
by cyclization of ꢀ-haloamides 2, which in turn are obtained
by haloamidation reaction of alkenes 1 (Scheme 1). However,
selective haloamidation reactions of alkenes are little explored.9
Recently, an efficient method for the haloamidation of cyclo-
hexenes was reported.10A one-pot synthesis11 of oxazolines from
(3) For recent reviews, see: (a) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.
Tetrahedron: Asymmetry 1998, 9, 1–45. (b) Johnson, J. S.; Evans, D. A. Acc.
Chem. Res. 2000, 33, 325–335. (c) Helmchen, G.; Pfaltz, A. Acc. Chem. Res.
2000, 33, 336–345.
(4) For representative reviews, see: (a) Frump, J. A. Chem. ReV. 1971, 71,
483–505. (b) Meyers, A. I.; Reuman, M. Tertrahedron 1985, 41, 837–860. (c)
Meyers, A. I.; Gant, T. G Tetrahedron 1994, 50, 2297–2360.
(5) (a) Huang, H.; Hoogenboom, R.; Leenen, M. A. M.; Guillet, P.; Jonas,
A. M.; Schubert, U. S.; Gohy, J.-F. J. Am. Chem. Soc. 2006, 128, 3784–3788.
(b) Kobayashi, S.; Fujikawa, S.-I.; Ohmae, M. J. Am. Chem. Soc. 2003, 125,
14357–14369. (c) Hseih, D. T.; Peiffer, D. G. J. Appl. Polym. Sci. 1995, 56,
1667–1671. (d) Kaku, M.; Hung, M. H. Macromolecules 1993, 26, 6135–6137.
(e) Cai, G.; Litt, M. H. Macromolecules 1992, 25, 2277–2279.
(7) (a) Chaudhry, P.; Schoenen, F.; Neuenswander, B.; Lushington, G. H.;
Aube, J. J. Comb. Chem 2007, 9, 473–476. (b) Fan, L.; Lobkovsky, E.; Ganem,
B. Org. Lett. 2007, 9, 2015–2017. (c) Crosignani, S.; Swinnen, D. J. Comb.
Chem. 2005, 7, 688–696.
(8) (a) Tiecco, M.; Testaferri, L.; Santi, C; Tomassini, C.; Marini, F.; Bagnoli,
L.; Temperini, A. Eur. J. Org. Chem. 2000, 3451–3457. (b) Tingoli, M.;
Testaferri, L.; Temperini, A.; Tiecco, M. J. Org. Chem. 1996, 61, 7085–7091.
(c) Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F. J. Chem. Soc. Perkin Trans. 1
1989, 1775–1780. (d) Hu, N. X.; Aso, Y.; Otsubo, T.; Ogura, F. Tetrahedron
Lett. 1988, 29, 1049–1052.
(6) For examples, see: (a) Schwekendiek, K.; Glorius, F. Synthesis 2006,
18, 2996–3002. (b) Ohshima, T.; Iwasaki, T.; Mashima, K. Chem. Commun.
2006, 2711–2713. (c) Rajaram, S.; Sigman, M. S. Org. Lett. 2002, 4, 3399–
3401. (d) Wuts, P. G. M.; Northuis, J. M.; Kwan, T. A. J. Org. Chem. 2000, 65,
9223–9225. (e) Elliot, P. M. C.; Druiswijk, E. J. Chem. Commun. 1997, 2311–
2312. (f) Zhou, P.; Blubaum, J. E.; Burns, C. T.; Natale, N. R. Tetrahedron
Lett. 1997, 38, 7019–7020. (g) Lowenthal, R. E.; Abiko, A.; Masamune, S.
Tetrahedron. Lett. 1990, 31, 6005–6008. (h) Witte, H.; Seeliger, W. Angew.
Chem., Int. Ed. Engl. 1972, 11, 287–289.
(9) (a) Tiecco, M.; Testaferri, L.; Marini, F.; Temperini, A.; Bagnoli, L.;
Santi, C. Synth. Commun. 1997, 27, 4131–4140. (b) Bellucci, G.; Bianchini, R.;
Chiappe, C. J. Org. Chem. 1991, 56, 3067–3073. (c) Hassner, A.; Levy, L. A.;
Gault, R. Tetrahedron Lett. 1966, 27, 3119–3121. (d) Cairns, T. L.; Graham,
P. J.; Barrick, P. L.; Schreiber, R. S. J. Org. Chem. 1952, 17, 751–757.
4320 J. Org. Chem. 2008, 73, 4320–4322
10.1021/jo8003937 CCC: $40.75 2008 American Chemical Society
Published on Web 05/07/2008