would likewise substitute for Ile and perhaps Val. Even if
this proved not to be the case, we expected that 1-Cbg would
be of high value in chemically synthesized peptides.
An asymmetric synthesis of 1-Cbg was designed around
a stereoselective addition of the cyclobutenyl component to
a chiral sulfinimine.9 Davis10 has demonstrated high dia-
stereoselectivity in the addition of Grignard reagents to
sulfinimine 2a derived from condensation of t-butane-
sulfinamide11 with ethyl glyoxylate. In accord with his
findings, we found that 1-cyclobutenylmagnesium bromide
(prepared by lithiation of 1-bromocyclobutene12 and trans-
metalation with MgBr2) likewise added smoothly to provide
a 9:1 mixture of diastereomers. Unfortunately, attempted
saponification of the ethyl ester led to extensive epimerization
and decomposition.
To circumvent the need for strong base in deprotection,
we sought an acid-labile ester and accordingly prepared the
corresponding sulfinimine 2b from tert-butyl glyoxylate,
easily obtained through ozonolysis of di-tert-butyl fumarate.13
As with the ethyl glyoxylate-derived sulfinimine 2a, addition
to 2b proceeded smoothly to afford a 9:1 mixture of
diastereomers, from which the major isomer 3b could be
crystallized in 40-50% yield and >97% de from hexane.
(2) (a) de Prat Gay, G.; Duckworth, H. W.; Fersht, A. R. FEBS Lett.
1993, 318, 167-171. (b) Ibba, M.; Hennecke, H. FEBS Lett. 1995, 364,
272-275. (c) Furter, R. Protein Sci. 1998, 7, 419-426. (d) Sharma, N.;
Furter, R.; Kast, P.; Tirrell, D. A. FEBS Lett. 2000, 467, 37-40. (e) Doring,
V.; Mootz, H. D.; Nangle, L. A.; Hendrickson, T. L.; de Crecy-Lagard, V.;
Schimmel, P.; Marliere, P. Science (Washington, DC) 2001, 292, 501-
504. (f) Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Science
(Washington, DC) 2001, 292, 498-500. (g) Chin, J. W.; Schultz, P. G.
ChemBioChem 2002, 3, 1135-1137. (h) Chin, J. W.; Martin, A. B.; King,
D. S.; Wang, L.; Schultz, P. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
11020-11024. (i) Datta, D.; Wang, P.; Carrico, I. S.; Mayo, S. L.; Tirrell,
D. A. J. Am. Chem. Soc. 2002, 124, 5652-5653. (j) Kiick, K. L.; Saxon,
E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
19-24. (k) Sakamoto, K.; Hayashi, A.; Sakamoto, A.; Kiga, D.; Nakayama,
H.; Soma, A.; Kobayashi, T.; Kitabatake, M.; Takio, K.; Saito, K.; Shirouzu,
M.; Hirao, I.; Yokoyama, S. Nucl. Acids Res. 2002, 30, 4692-4699. (l)
Tang, Y.; Tirrell, D. A. Biochemistry 2002, 41, 10635-10645. (m) Zhang,
D.; Vaidehi, N.; Goddard, W. A., III; Danzer, J. F.; Debe, D. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 6579-6584. (n) Chin, J. W.; Cropp, T. A.;
Anderson, J. C.; Mukherji, M.; Zhang, Z.; Schultz, P. G. Science
(Washington, DC) 2003, 301, 964-967. (o) Dedkova, L. M.; Fahmi, N.
E.; Golovine, S. Y.; Hecht, S. M. J. Am. Chem. Soc. 2003, 125, 6616-
6617. (p) Frankel, A.; Roberts, R. W. RNA 2003, 9, 780-786. (q) Kwon,
I.; Kirshenbaum, K.; Tirrell, D. A. J. Am. Chem. Soc. 2003, 125, 7512-
7513. (r) Mehl, R. A.; Anderson, J. C.; Santoro, S. W.; Wang, L.; Martin,
A. B.; King, D. S.; Horn, D. M.; Schultz, P. G. J. Am. Chem. Soc. 2003,
125, 935-939. (s) Wang, L.; Zhang, Z.; Brock, A.; Schultz, P. G. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 56-61. (t) Zhang, Z.; Smith, B. A. C.;
Wang, L.; Brock, A.; Cho, C.; Schultz, P. G. Biochemistry 2003, 42, 6735-
6746.
Scheme 1. Synthesis of l-(1-Cyclobutenyl)glycine
(3) (a) Brunthaler, J. K.; Stelzer, F.; Leising, G. J. Mol. Catal. 1985, 28,
393-402. (b) Wu, Z.; Wheeler, D. R.; Grubbs, R. H. J. Am. Chem. Soc.
1992, 114, 146-151. (c) Alder, R. W.; Allen, P. R.; Khosravi, E. Chem.
Commun. (Cambridge) 1994, 1235-1236. (d) Perrott, M. G.; Novak, B.
M. Macromolecules 1995, 28, 3492-3494. (e) Wu, Z.; Grubbs, R. H.
Macromolecules 1995, 28, 3502-3508. (f) Perrott, M. G.; Novak, B. M.
Macromolecules 1996, 29, 1817-1823. (g) Maughon, B. R.; Weck, M.;
Mohr, B.; Grubbs, R. H. Macromolecules 1997, 30, 257-265. (h) Maughon,
B. R.; Grubbs, R. H. Macromolecules 1997, 30, 3459-3469. (i) Weck,
M.; Mohr, B.; Maughon, B. R.; Grubbs, R. H. Macromolecules 1997, 30,
6430-6437. (j) Thorn-Csanyi, E.; Ruhland, K. Macromol. Chem. Phys.
1999, 200, 1662-1671. (k) Thorn-Csanyi, E.; Ruhland, K. Macromol. Chem.
Phys. 1999, 200, 2245-2249. (l) Thorn-Csanyi, E.; Ruhland, K. Macromol.
Chem. Phys. 1999, 200, 2606-2611. (m) Charvet, R.; Novak, B. M.
Macromolecules 2001, 34, 7680-7685.
(4) (a) Randall, M. L.; Tallarico, J. A.; Snapper, M. L. J. Am. Chem.
Soc. 1995, 117, 9610-11. (b) Zuercher, W. J.; Hashimoto, M.; Grubbs, R.
H. J. Am. Chem. Soc. 1996, 118, 6634-6640. (c) Snapper, M. L.; Tallarico,
J. A.; Randall, M. L. J. Am. Chem. Soc. 1997, 119, 1478-1479. (d)
Tallarico, J. A.; Randall, M. L.; Snapper, M. L. Tetrahedron 1997, 53,
16511-16520. (e) Cuny, G. D.; Cao, J.; Sidhu, A.; Hauske, J. R.
Tetrahedron 1999, 55, 8169-8178. (f) Bassindale, M. J.; Hamley, P.;
Harrity, J. P. A. Tetrahedron Lett. 2001, 42, 9055-9057. (g) Feng, J.;
Szeimies, G. Eur. J. Org. Chem. 2002, 2942-2947. (h) White, B. H.;
Snapper, M. L. J. Am. Chem. Soc. 2003, 125, 14901-14904.
(5) Heyns, K.; Molge, K.; Walter, W. Chem. Ber. 1961, 94, 1015-25.
(6) Tirrell, D. A.; Tang, Y.; Carrico, I. S. Abstracts of Papers, 222nd
National Meeting of the American Chemical Society, Chicago, IL, August
26-30, 2001; American Chemical Society: Washington, DC, 2001; ORGN-
019.
(7) Isolation and biochemistry: (a) Katagiri, K.; Tori, K.; Kimura, Y.;
Yoshida, T.; Nagasaki, T.; Minato, H. J. Med. Chem. 1967, 10, 1149-
1154. (b) Tanaka, K.; Tamaki, M.; Watanabe, S. Biochim. Biophys. Acta
1969, 195, 244-245. (c) Parry, R. J.; Buu, H. P. J. Am. Chem. Soc. 1983,
105, 7446-7447. (d) Parry, R. J.; Turakhia, R.; Buu Hanh, P. J. Am. Chem.
Soc. 1988, 110, 4035-4036. (e) Kohno, T.; Kohda, D.; Haruki, M.;
Yokoyama, S.; Miyazawa, T. J. Biol. Chem. 1990, 265, 6931-6935. (f)
Vanbrunt, M. P. Ph.D. Dissertation, Texas A&M University, College Station,
TX, 2001.
To obtain the parent amino amino acid for use in ribosomal
protein translation (and potentially other applications), both
N- and C-protecting groups had to be removed. The simplest
path appeared to be simultaneous deprotection of both the
tert-butylsulfinamide and the tert-butyl ester. In practice, the
tert-butyl ester proved to be much more resistant to acid,
and best results were obtained via two-stage deprotection;
thus, treatment of 3b with a 1:1 mixture of methanol and 4
(8) Total syntheses: (a) Joullie´, M. M.; Wang, P. C.; Semple, J. E. J.
Am. Chem. Soc. 1980, 102, 887-889. (b) Kang, S. H.; Lee, S. B. Chem.
Commun. (Cambridge) 1998, 761-762. (c) Zhang, J.; Clive, D. L. J. J.
Org. Chem. 1999, 64, 1754-1757. (d) VanBrunt, M. P.; Standaert, R. F.
Org. Lett. 2000, 2, 705-708. (e) Zimmermann, P. J.; Blanarikova, I.; Jager,
V. Angew. Chem., Int. Ed. 2000, 39, 910-912.
(9) For reviews on the use of sulfinimines in the synthesis of amino
acids, see: (a) Ellman, J. A. Pure Appl. Chem. 2003, 75, 39-46. (b) Ellman,
J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995. (c)
Davis, F. A.; Chen, B.-C. Chem Soc. ReV. 1998, 27, 13-18.
(10) Davis, F. A.; McCoull, W. J. Org. Chem. 1999, 64, 3396-3397.
(11) (a) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913-9914. (b) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317-
1320.
(12) (a) Weber, J.; Haslinger, U.; Brinker, U. H. J. Org. Chem. 1999,
64, 6085-6086. (b) Feng, J.; Szeimies, G. Tetrahedron 2000, 56, 4249-
4252.
(13) Bishop, J. E.; O’Connell, J. F.; Rapoport, H. J. Org. Chem. 1991,
56, 5079-5091.
3660
Org. Lett., Vol. 6, No. 21, 2004