SCHEME 1. Retr osyn th etic An a lysis of th e 47-Mem ber Ma cr ocycle
SCHEME 2. P r ep a r a tion of th e 47-Mem ber Ma cr ocyclea
a
(i) a MeONa, MeOH, (ii) TMSCl, paraformaldehyde 100%, (iii) TrCl, 85%, (iv) 2, DIPEA, tBu4NI, THF 60 °C 82%, (v) LiAlH4, reflux
THF 91%, (vi) NaH, tBu4NI, allyl iodide, 90%, (vii) RuCl2(dCHPh)(PCy3)2, CH2Cl2 reflux 100%.
simple route to macrocycles. Furthermore, the calculation
of the octanol/water partition coefficients (logP) indicated
a gain of eight logs between the saturated (16.12) and
the oxygenated ring (8.36). These data showed that the
polyoxygenated ring will decrease the highly hydrophobic
nature of polythiourea lipids and will therefore lead to
an easier lipid/DNA complex formulation.14
In this note, we describe the preparation of two models
(Figure 2), a 47-member macrocycle and a tricyclic 101-
atom ring containing two symmetrical benzene groups,
in order to avoid folding that has been described for
bolaform amphiphile.17-20 Second, the transformation of
the 47-member macrocycle to a polyamino lipid will be
depicted.
Therefore, we began our synthesis with 2, which is
available in two steps from ω-pentadecalactone (Scheme
2). Protection of diethanolamine produced the trityl
derivative 4 in 85% yield. Condensation of 4 with the
(1) Rubanyi, G. M. Mol. Aspects Med. 2001, 22, 113.
(2) Nabel, G. J . Proc. Nat. Acad. Sci. 1999, 96, 324.
(3) Verma, I. M.; Somia, N. Nature 1997, 389, 239.
(4) Miller, A. D. Angew. Chem., Int. Ed. Engl. 1998, 37, 7, 1768.
(5) (a) De Rosa, M. Thin Solid Films 1996, 284-285, 13-17. (b)
Gliozzi, A.; Relini, A.; Chong, P. L.-G. J . Membrane Sci. 2002, 206,
131.
(6) Patel, G. B. Sprott, G. D. Crit. Rev. Biotechnol. 1999, 19, 317.
(7) Patel, G. B; Omri, A.; Deschatelets, L.; Sprott, G. D. J . Liposome
Res. 2002, 12, 353.
(8) Patwardhan, A. P.; Thompson, D. H. Org. Lett. 1999, 1, 241.
(9) Menger, F. M.; Chen, X. Y. Tetrahedron Lett. 1996, 37, 323.
(10) (a) Eguchi, T.; Terachi, T.; Kakinuma, K. J . Chem. Soc., Chem.
Commun. 1996, 365. (b) Eguchi, T.; Ibaragi, K.; Kakinuma, K. J . Org.
Chem. 1998, 63, 2689. (c) Arakawa, K.; Kano, H.; Eguchi, T.; Nish-
iyama, Y.; Kakinuma, K. Bull. Chem. Soc. J pn. 1999, 72, 1575.
(11) Arakawa, K.; Eguchi, T.; Kakinuma, K. J . Org. Chem. 1998,
63, 4741.
(12) Eguchi, T.; Arakawa, K.; Terachi, T.; Kakinuma, K. J . Org.
Chem. 1997, 62, 1924.
(13) Carriere, M.; Tranchant, I.; Niore, P.-A.; Byk, G.; Mignet, N.;
Escriou, V.; Scherman, D.; Herscovici, J . J . Liposome Res. 2002, 12,
95-106.
(14) Herscovici, J .; Scherman, D.; Tranchant, I.; Mignet, N.;
Girard, C. Patent WO02092558; WO2002FR01626, FR20010006330,
US20010297482P, 14/05/2001. Girard, C.; Tranchant, I.; Gorteau, V.;
Potey, L.; Herscovici, J . J . Comb. Chem. 2004, 6, 275.
Syn th esis of th e 47-Mem ber Ma cr ocycle
Our retrosynthetic analysis for the macrocycle A is
shown in Scheme 1. Macrocyclization would occur upon
a ring-closing metathesis21 (RCM) of precursor B, which
may be prepared by allylation of diol C. The construction
of C would be easily achieved by the reduction of methyl
ester D. Accordingly, disconnection of D gives the known
compounds diethanolamine and methyl 15-hydroxy-pen-
tadecanoate.
6950 J . Org. Chem., Vol. 69, No. 20, 2004