The Journal of Physical Chemistry A
Article
(63) Yano, S.; Nakagoshi, M.; Teratani, A.; Kato, M.; Onaka, T.; Iida,
M.; Tanase, T.; Yamamoto, Y.; Uekusa, H.; Ohashi, Y. Chiral Inversion
around a Seven-Coordinated Cobalt Center Induced by an Interaction
between Sugars and Sulfate Anions. Inorg. Chem. 1997, 36, 4187−
4194.
(64) Zahn, S.; Canary, J. W. Electron-Induced Inversion of Helical
Chirality in Copper Complexes of N,N-dialkylmethionines. Science
2000, 288 (5470), 1404−1407.
(65) Chen, W. C.; Lee, Y. W.; Chen, C. T. Diastereoselective,
Synergistic Dual-Mode Optical Switch with Integrated Chirochromic
Helicene and Photochromic Bis-azobenzene Moieties. Org. Lett. 2010,
12, 1472−1475.
(66) Feringa, B. L. The Art of Building Small: From Molecular
Switches to Molecular Motors. J. Org. Chem. 2007, 72, 6635−6652.
(67) Feringa, B. L.; Jager, W. F.; Delange, B.; Meijer, E. W.
Chiroptical Molecular Switch. J. Am. Chem. Soc. 1991, 113, 5468−
5470.
(68) Jager, W. F.; Dejong, J. C.; Delange, B.; Huck, N. P. M.;
Meetsma, A.; Feringa, B. L. A Highly Stereoselective Optical Switching
Process-Based on Donor-Acceptor-Substituted Dissymmetric Alkenes.
Angew. Chem., Int. Ed. 1995, 34, 348−350.
(69) Mammana, A.; Carroll, G. T.; Areephong, J.; Feringa, B. L. A
Chiroptical Photoswitchable DNA Complex. J. Phys. Chem. B 2011,
115, 11581−11587.
(70) Nishida, J.; Suzuki, T.; Ohkita, M.; Tsuji, T. A Redox Switch
Based on Dihydro[5]helicene: Drastic Chiroptical Response Induced
by Reversible C−C Bond Making/Breaking upon Electron Transfer.
Angew. Chem., Int. Ed. 2001, 40, 3251−3254.
(71) Okano, K.; Ogino, S.; Kawamoto, M.; Yamashita, T. Mass
Migration on a Polymer Surface Caused by Photoinduced Molecular
Rotation. Chem. Commun. 2011, 47, 11891−11893.
(72) Takaishi, K.; Muranaka, A.; Kawamoto, M.; Uchiyama, M.
Photoinversion of Cisoid/Transoid Binaphthyls. Org. Lett. 2012, 14,
276−279.
(73) Tietze, L. F.; Dufert, A.; Lotz, F.; Solter, L.; Oum, K.; Lenzer,
T.; Beck, T.; Herbst-lrmer, R. Synthesis of Chiroptical Molecular
Switches by Pd-Catalyzed Domino Reactions. J. Am. Chem. Soc. 2009,
131, 17879−17884.
(74) Haberhauer, G. A Metal-Ion-Driven Supramolecular Chirality
Pendulum. Angew. Chem., Int. Ed. 2010, 49, 9286−9289.
(75) Jiang, X.; Lim, Y. K.; Zhang, B. J.; Opsitnick, E. A.; Baik, M. H.;
Lee, D. Dendritic Molecular Switch: Chiral Folding and Helicity
Inversion. J. Am. Chem. Soc. 2008, 130, 16812−16822.
(76) Reichert, S.; Breit, B. Development of an Axial Chirality Switch.
Org. Lett. 2007, 9, 899−902.
(77) Smith, H. E. The Salicylidenamino Chirality Rule − A Method
for the Establishment of the Absolute-Configurations of Chiral
Primary Amines by Circular-Dichroism. Chem. Rev. 1983, 83, 359−
377.
(78) Smith, H. E.; Neergaard, J. R.; Burrows, E. P.; Chen, F. M.
Optically-Active Amines. 16. Exciton Chirality Method Applied to
Salicylidenimine Chromophore − Salicylidenimine Chirality Rule. J.
Am. Chem. Soc. 1974, 96, 2908−2916.
(79) Kamienski, B.; Schilf, W.; Dziembowska, T.; Rozwadowski, Z.;
Szady-Chelmieniecka, A. The 15N and 13C Solid State NMR Study of
Intramolecular Hydrogen Bond in Some Schiff’s Bases. Solid State
Nucl. Magn. Reson. 2000, 16, 285−289.
Bour, P.; Ruud, K. Determination of Absolute Configuration and
Conformation of a Cyclic Dipeptide by NMR and Chiral
Spectroscopic Methods. J. Phys. Chem. A 2013, 117, 1721−1736.
(84) Nakai, Y.; Mori, T.; Inoue, Y. Theoretical and Experimental
Studies on Circular Dichroism of Carbo[n]helicenes. J. Phys. Chem. A
2012, 116, 7372−7385.
(85) Nakai, Y.; Mori, T.; Inoue, Y. Circular Dichroism of (Di)methyl-
and Diaza[6]helicenes. A Combined Theoretical and Experimental
Study. J. Phys. Chem. A 2013, 117, 83−93.
(86) Nakai, Y.; Mori, T.; Sato, K.; Inoue, Y. Theoretical and
Experimental Studies of Circular Dichroism of Mono- and
Diazonia[6]helicenes. J. Phys. Chem. A 2013, 117, 5082−5092.
(87) Oh, K. I.; Kim, W.; Joo, C.; Yoo, D. G.; Han, H.; Hwang, G. S.;
Cho, M. Azido Gauche Effect on the Backbone Conformation of β-
Azidoalanine Peptides. J. Phys. Chem. B 2010, 114, 13021−13029.
(88) Park, E. K.; Park, B. J.; Choi, J. H.; Choi, K. H.; Cho, M. H.
Chirality Transfer Effects in Proline-Substituted Coumarin Com-
pounds. J. Phys. Chem. B 2009, 113, 11301−11305.
(89) Pikulska, A.; Hopmann, K. H.; Bloino, J.; Pecul, M. Circular
Dichroism and Optical Rotation of Lactamide and 2-Aminopropanol
in Aqueous Solution. J. Phys. Chem. B 2013, 117, 5136−5147.
(90) Sang, Y. M.; Yan, L. K.; Ma, N. N.; Wang, J. P.; Su, Z. M.
TDDFT Studies on the Determination of the Absolute Configurations
and Chiroptical Properties of Strandberg-Type Polyoxometalates. J.
Phys. Chem. A 2013, 117, 2492−2498.
(91) Sun, P.; Xu, D. X.; Mandl, A.; Kurtan, T.; Li, T. J.; Schulz, B.;
Zhang, W. Structure, Absolute Configuration, and Conformational
Study of 12-Membered Macrolides from the Fungus Dendrodochium
sp. Associated with the Sea Cucumber Holothuria nobilis Selenka. J.
Org. Chem. 2013, 78, 7030−7047.
(92) Jaworska, M.; Welniak, M.; Zieciak, J.; Kozakiewicz, A.;
Wojtczak, A. Bidentate Schiff Bases Derived from (S)-α-Methylbenzyl-
amine as Chiral Ligands in the Electronically Controlled Asymmetric
Addition of Diethylzinc to Aldehydes. Arkivoc 2011, 189−204.
(93) Berova, N.; Di Bari, L.; Pescitelli, G. Application of Electronic
Circular Dichroism in Configurational and Conformational Analysis of
Organic Compounds. Chem. Soc. Rev. 2007, 36, 914−931.
(94) Liu, B. B.; Lu, W.; Du, G. H.; Chen, D.; Ling, J.; Jiang, L. M.;
Shen, Z. Q. Design of an Optically Active Polystyrene Bearing Imine
Pendants and Its Acid/Base-Triggered Chiroptical Switch Property.
Acta Polym. Sin. 2013, 4, 436−442.
(95) The conformers of Et-s-2, s-2, and s-2− in solution were
optimized with the PCM model for DMSO or hexane at the B3LYP/6-
311++G** level of theory. The results showed that their respective
solution conformers of lowest energy in both the solvents are the
same.
(96) Kanamori, D.; Okamura, T.; Yamamoto, H.; Shimizu, S.;
Tsujimoto, Y.; Ueyama, N. Structures of the Small-Molecule Bcl-2
Inhibitor (BH3I-2) and Its Related Simple Model in Protonated and
Deprotonated Forms. Bull. Chem. Soc. Jpn. 2004, 77, 2057−2064.
(97) Kanamori, D.; Okamura, T. A.; Yamamoto, H.; Ueyama, N.
Linear-to-Turn Conformational Switching Induced by Deprotonation
of Unsymmetrically Linked Phenolic Oligoamides. Angew. Chem., Int.
Ed. 2005, 44, 969−972.
(98) Kondo, M. Nuclear Magnetic-Resonance Study of Several o-
Disubstituted Benzenes. Bull. Chem. Soc. Jpn. 1972, 45, 2790−2793.
(99) Mock, W. L.; Chua, D. C. Y. Exceptional Active-Site H-Bonding
In Enzymes - Significance of the Oxyanion Hole in the Serine
Proteases from a Model Study. J. Chem. Soc., Perkin Trans. 2 1995, 11,
2069−2074.
(100) Steinwender, E.; Mikenda, W. O−H...O(S) Hydrogen-Bonds
in 2-Hydroxy(thio)Benzamides. Survey of Spectroscopic and Struc-
tural Data. Monatsh. Chem. 1990, 121, 809−820.
(80) Salman, S. R.; Kamounah, F. S. Tautomerism in 1-Hydroxy-2-
naphthaldehyde Schiff Bases: Calculation of Tautomeric Isomers
Using Carbon-13 NMR. Spectrosc. Int. J. 2003, 17, 747−752.
(81) Abbate, S.; Lebon, F.; Longhi, G.; Boiadjiev, S. E.; Lightner, D.
A. Vibrational and Electronic Circular Dichroism of Dimethyl
Mesobilirubins-XIIIα. J. Phys. Chem. B 2012, 116, 5628−5636.
(82) Jastrzebska, I.; Gorecki, M.; Frelek, J.; Santillan, R.; Siergiejczyk,
L.; Morzycki, J. W. Photoinduced Isomerization of 23-Oxosapogenins:
Conformational Analysis and Spectroscopic Characterization of 22-
Isosapogenins. J. Org. Chem. 2012, 77, 11257−11269.
(101) Tanatani, A.; Yokoyama, A.; Azumaya, I.; Takakura, Y.; Mitsui,
C.; Shiro, M.; Uchiyama, M.; Muranaka, A.; Kobayashi, N.; Yokozawa,
T. Helical Structures of N-Alkylated Poly(p-benzamide)s. J. Am. Chem.
Soc. 2005, 127, 8553−8561.
(83) Li, X. J.; Hopmann, K. H.; Hudecova, J.; Isaksson, J.; Novotna,
J.; Stensen, W.; Andrushchenko, V.; Urbanova, M.; Svendsen, J. S.;
291
dx.doi.org/10.1021/jp410370q | J. Phys. Chem. A 2014, 118, 283−292