8970
Y. Kaburagi, Y. Kishi / Tetrahedron Letters 48 (2007) 8967–8971
developed by Jacobsen (Jacobsen, E. N.; Zhang, W.;
Nowak, P.; Wan, Z.-K.; Xie, C. Pure Appl. Chem. 2003,
75, 1, and the references cited therein; (c) Namba, K.; Jun,
H.-S.; Kishi, Y. J. Am. Chem. Soc. 2004, 126, 7770; (d)
Namba, K.; Kishi, Y. J. Am. Chem. Soc. 2005, 127, 15382;
(e) Kaburagi, Y.; Kishi, Y. Org. Lett. 2007, 9, 723, and
references cited therein.
Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc.
1991, 113, 7063) and by Katsuki (Irie, R.; Noda, K.; Ito,
Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990,
31, 7345), hydrolytic kinetic resolutions of racemic epox-
ides pioneered by Jacobsen (Tokunaga, M.; Larrow, J. F.;
Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936), and
chiral ketone-based asymmetric epoxidation developed by
Shi (Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996,
118, 9806) and others. There are numerous reviews
published to cover these subjects. For a recent review,
see: Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su,
K.-X. Chem. Rev. 2005, 105, 1603. For recent monographs,
see: Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.
Ed.; Wiley-VCH: New York, 2000; Comprehensive Asym-
metric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto,
H., Eds.; Springer: New York, 1999; Comprehensive
Organometallic Chemistry II; Abel, E. W., Stone, F. G.
A., Wilkinson, G., Eds.; Pergamon: New York, 1995; Vol.
12. (volume edited by Hegedus, L. S.). For asymmetric
epoxidation of homoallylic alcohols, see: Zhang, W.;
Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 286.
18. Jordan and co-workers recently reported that the primary
antimitotic mechanism of action of E7389 is suppression
of microtubule growth; see: Jordan, M. A.; Kamath, K.;
Manna, T.; Okouneva, T.; Miller, H. P.; Davis, C.;
Littlefield, B. A.; Wilson, L. Mol. Cancer Ther. 2005, 4,
1086.
19. Wahler, D.; Badalassi, F.; Crotti, P.; Reymond, J.-L.
Chem. Eur. J. 2002, 8, 3211.
20. Koyama, H.; Fujikawa, H. Japan Patent # 2618713, 1997.
21. The concentration of ammonolysis reported by Reymond
and co-workers was approximately 125 mM.19
22. p-Toluenesulfonic acid was shown to be as effective as
MsOH.
23. As anticipated, stylene oxide gave a significant amount of
the regioisomer, along with the dimers. Even for this case,
the effect of MsOH on the formation of both regioisomer
and dimers was noticed.
5. For chiral epoxide synthesis via chiral dihydroxylation,
see: Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48,
10515, and references cited therein.
6. For chiral epoxides via asymmetric reduction of ketones,
see: (a) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1993,
34, 5227; (b) Ramachandran, P. V.; Gong, B.; Brown, H.
C. J. Org. Chem. 1995, 60, 41; (c) Kitamura, M.;
Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117,
2931, and references cited therein.
7. For the microwave-assisted ammonolysis/aminolysis, see:
(a) Sabitha, G.; Subba Reddy, B. V.; Abraham, S.; Yadav,
J. S. Green Chem. 1999, 251; (b) Favretto, L.; Nugent, W.
A.; Licini, G. Tetrahedron Lett. 2002, 43, 2581; (c)
Wellner, E.; Sandin, H.; Swanstein, M.-L. Synlett 2004,
1817; (d) Sello, G.; Orsini, F.; Bernasconi, S.; Di Gennaro,
P. Tetrahedron: Asymmetry 2006, 17, 372.
OH
NH
2
sat. NH
in EtOH
O
3
H N
2
HO
dimers
[C]=40 mM
MsOH (5eq) added: product ratio
No MsOH added: product ratio
=
=
100
100
:
:
20
30
:
:
5
10
24. Additional two substrates a and b were subjected to
ammonolysis under the optimum condition, to give the
expected aminoalcohols in almost quantitative yields.
Me
Me
Me
Me
O
O
Me
a
b
8. Overman, L. E.; Flippin, L. A. Tetrahedron Lett. 1981, 22,
195.
9. Carre, M. C.; Houmounou, J. P.; Caubere, P. Tetrahedron
Lett. 1985, 26, 3107.
10. Yamada, J.; Yumoto, M.; Yamamoto, Y. Tetrahedron
Lett. 1989, 30, 4255.
11. Fiorenza, M.; Ricci, A.; Taddei, M.; Tassi, D. Synthesis
1983, 640.
12. Papini, A.; Ricci, A.; Taddei, M. J. Chem. Soc., Perkin
Trans. 1 1984, 2261.
13. Chini, M.; Crotti, P.; Macchia, F. Tetrahedron Lett. 1990,
31, 4661.
14. Chini, M.; Crotti, P.; Favero, L.; Macchia, F.; Pineschi,
M. Tetrahedron Lett. 1994, 35, 433.
25. Two model substrates c and d were first used to demon-
strate that the identified optimum condition is effective for
the transformation of 5 into 7. Substrates c and d were
synthesized from the known crystalline dibenzoate, that is,
dibenzoate 15 reported in Ref. 17b, in 3 (1. BnBr/TBAI/
Ag2O/CH2Cl2/rt, 2. aq KOH/MeOH–THF/rt, 3. p-TsCl/
n-Bu2SnO/Et3N/CH2Cl2/rt26) and 4 (1. H2/Pd(OH)2 on C/
˚
EtOH/rt, 2. MeI/Ag2O/MS 4A/rt, 3. aq KOH/MeOH–
THF/rt, 4. p-TsCl/n-Bu2SnO/Et3N/CH2Cl2/rt26) steps,
respectively.
BnO
OBn
MeO
HO
OMe
HO
TsO
TsO
Me
O
O
15. (a) Posner, G. H.; Rogers, D. Z. J. Am. Chem. Soc. 1977,
99, 8208; (b) Posner, G. H. Angew. Chem., Int. Ed. Engl.
1978, 17, 487.
c
d
26. Martinelli, M. J.; Vaidyanathan, R.; Pawlak, J. M.;
Nayyar, N. K.; Dhokte, U. P.; Doecke, C. W.; Zollars,
L. M. H.; Moher, E. D.; Van Khau, V.; Kosˇmrlj, B. J. Am.
Chem. Soc. 2002, 124, 3578.
27. This ammonolysis was conducted also at 70 °C for 10 h at
[C] = 20 mM in a 9.4-mg scale, to furnish the desired
product over 95% yield. The purity of the crude product
thus obtained was found to be as good as that of the
product obtained at room temperature (1H NMR analysis
of the crude product and its O,N-diacetate).
28. A 10-mL vial equipped with a magnetic stirbar and a
rubber septum fitted with an ammonia inlet needle and a
pressure equilibrating needle was charged with 5 (18.8 mg,
0.0232 mmol, 1.0 equiv) and EtOH (0.58 mL). Ammonia
gas was bubbled through the needle for 5 min, and then
16. (a) Zheng, W.; Seletsky, B. M.; Palme, M. H.; Lydon, P.
J.; Singer, L. A.; Chase, C. E.; Lemelin, C. A.; Shen, Y.;
Davis, H.; Tremblay, L.; Towle, M. J.; Salvato, K. A.;
Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield, B. A.; Yu,
M. J. Bioorg. Med. Chem. Lett. 2004, 14, 5551; (b)
Littlefield, B. A.; Palme, M. H.; Seletsky, B. M.; Towle,
M. J.; Yu, M. J.; Zheng, W. U.S. Patent 6,214,865,
6,365,759, and International Patent WO99/65894.
17. For the synthetic work on the marine natural product
halichondrins from this laboratory, see: (a) Aicher, T. D.;
Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.;
Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.;
Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162; (b) Choi,
H.-w.; Demeke, D.; Kang, F.-A.; Kishi, Y.; Nakajima, K.;