ORGANIC
LETTERS
2004
Vol. 6, No. 22
3937-3940
Cobalt(I)-Mediated [2
+ 2 + 2]
Cyclization of Allenediynes toward a
Diastereoselective Approach to 11-Aryl
Steroid Skeletons
Marc Petit, Corinne Aubert,* and Max Malacria*
Laboratoire de Chimie Organique associe´ au CNRS, UniVersite´ Pierre et Marie Curie
(Paris 6), Tour 44-54, 2e`me e´tage, Case 229, 4 Place Jussieu,
F-75252 Paris Cedex 05, France
aubert@ccr.jussieu.fr; malacria@ccr.jussieu.fr
Received July 29, 2004
ABSTRACT
An 11-aryl steroid skeleton has been built in one step with a simultaneous introduction of the substituents at both C11 and C10 in 48% overall
yield from a trans-allenediyne, whereas a formal Alder ene reaction leading to a bicyclic yne-trienic compound becomes the major process
from the cis-allenediyne.
In the past 20 years, the synthesis, biological evaluation, and
clinical applications of an entirely new class of antiproges-
tational steroids have emerged.1 One of the primary structural
features of such steroids is the presence of an 11â-aryl
moiety.2 Due to their industrially relevant pharmacological
properties, a large number of synthetic efforts aimed at
producing new compounds has been reported.3 However, the
synthesis of 11â-aryl steroids is still very much in need of
the development of new methods.
explored the feasibility of building 11-aryl steroid frame-
works by using an intramolecular cobalt(I)-mediated [2 + 2
+ 2] cyclization of allenediynes.
The use of transition metal-mediated cyclizations5,6 is
certainly not new in the synthesis of the steroid nucleus.
Indeed, the cobalt(I) synthesis of racemic estrone is the
paramount illustration of the potency of this method.7 In
(3) (a) Be´langer, A.; Philibert, D.; Teutsch, G. Steroids 1981, 37, 361-
382. (b) Ottow, E.; Neef, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1989, 28, 773-776. (c) Hazra, B. G.; Basu, S.; Pore, V. S.; Joshi, P. L.;
Pal, D.; Chakrabarti, P. Steroids 2000, 65, 157-162. (d) Rao, P. N.; Acosta,
C. K.; Bahr, M. L.; Burdett, J. E.; Cessac, J. W.; Morrison, P. A.; Kim, H.
K. Steroids 2000, 65, 395-400. (e) Geisler, J.; Cleve, A.; Harre, M. Steroids
2000, 56, 6489-6492. (f) Lecomte, V.; Foy, N.; Le Bideau, F.; Stephan,
E.; Jaouen, G. Tetrahedron Lett. 2001, 42, 5409-5411. (g) Prat, D.;
Benedetti, F.; Nait Bouda, L.; Franc Girard, G. Tetrahedron Lett. 2004,
45, 765-768.
(4) (a) Aubert, C.; Buisine, O.; Petit, M.; Slowinski, F.; Malacria, M.
Pure Appl. Chem. 1999, 71, 1463-1470. (b) Petit, M.; Chouraqui, G.;
Phansavath, P.; Aubert, C.; Malacria, M. Org. Lett. 2002, 4, 1027-1029.
(c) A¨ıssa, C.; Delouvrie´, B.; Dhimane, A. L.; Fensterbank, L.; Malacria,
M. Pure Appl. Chem. 2000, 72, 1605-1613.
In the course of our ongoing program based on metal-
catalyzed or radical cyclization cascades directed toward the
elaboration of basic skeletons of natural products,4 we have
(1) (a) Baulieu, E. E. In Clinical Applications of Mifepristone (RU486)
and Other Antiprogestins: Assessing the Science and Recommending a
Research Agenda; Donaldson, M. S., Dorflinger, L., Brown, S. S., Benet,
L. Z., Eds.; National Academic Press: Washington, DC, 1993; pp 71-
119. (b) Weigel, N. L. Ibid; pp 120-138. (c) Rao, P. N.; Wang, Z.; Cessac,
J. W.; Rosenberg, R. S.; Jenkins, D. J. A.; Diamandis, E. P. Steroids 1998,
63, 523-530. (d) Fuhrmann, U.; Hess-Stumpp, H.; Cleve, A.; Neef, G.;
Schwede, W.; Hoffmann, J.; Fritzemeier, K.-H.; Chwalisz, K. J. Med. Chem.
2000, 43, 5010-5016 and references therein.
(2) (a) Teutsch, G.; Ojasoo, T.; Raynaud, J. P. J. Steroid Biochem. 1988,
31, 549-565. (b) Cleve, A.; Frizmeier, K. H.; Heinrich, N.; Klar, U.; Mu¨ller-
Fahrnow, A.; Neef, G.; Ottow, E.; Schwede, W. Tetrahedron 1996, 52,
1529-1532.
(5) Su¨nnemann, H. W.; de Meijere, A. Angew. Chem., Int. Ed. 2004,
43, 895-897 and references therein.
(6) Vollhardt, K. P. C. Pure Appl. Chem. 1985, 57, 1819-1826.
(7) Funk, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1980, 102, 5253-
5261.
10.1021/ol0485060 CCC: $27.50
© 2004 American Chemical Society
Published on Web 10/01/2004