Angewandte
Chemie
with a high a-selectivity of > 95:5.[17] Reductive removal of
the auxiliary iodo function led to the benzyl ether 34. In order
to prevent side reactions with the subsequent hydrogenolysis,
it was necessary to remove all tin impurities from 34 by
treatment with fluoride at this stage. The corresponding
primary alcohol could be oxidized to the aldehyde 35. The
final step for the completion of the southern half was the
chelation-controlled addition of the Grignard reagent 36[9] to
35 to produce the corresponding alcohol with a diastereose-
lectivity of 96:4. Cleavage of the two acetates led to the triol
37.
Keywords: cross-coupling · glycosylation · macrolides ·
natural products · total synthesis
.
[1] L. Benitez-Bribiesca in When Cells Die (Eds. R. A. Lockshin, Z.
Zakeri, J. L. Tilly), Wiley-Liss, New York, 1998, pp. 453 – 482.
[2] J. W. Kim, H. Adachi, K. Shin-ya, Y. Hayakawa, H. Seto, J.
Antibiot. 1997, 50, 628 – 630.
[3] Y. Hayakawa, J. W. Kim, H. Adachi, K. Shin-ya, K. Fujita, H.
Seto, J. Am. Chem. Soc. 1998, 120, 3524 – 3525.
[4] a) A. R. Salomon, D. W. Voehringer, L. A. Herzenberg, C.
Khosla, Proc. Natl. Acad. Sci. USA 2000, 97, 14766 – 14771;
b) A. R. Salomon, D. W. Voehringer, L. A. Herzenberg, C.
Khosla, Chem. Biol. 2001, 8, 71 – 80; c) A. R. Salomon, Y.
Zhang, H. Seto, C. Khosla, Org. Lett. 2001, 3, 57 – 59.
[5] P. A. Wender, O. D. Jankowski, E. A. Tabet, H. Seto, Org. Lett.
2003, 5, 487 – 490.
[6] a) P. A. Wender, A. V. Gulledge, O. D. Jankowski, H. Seto, Org.
Lett. 2002, 4, 3819 – 3822; b) J. D. Pennington, H. J. Williams,
A. R. Salomon, G. A. Sulikowski, Org. Lett. 2002, 4, 3823 – 3825.
[7] Total syntheses: a) K. C. Nicolaou, Y. Li, K. C. Fylaktakidou,
H. J. Mitchell, H. X. Wei, B. Weyershausen, Angew. Chem. 2001,
113, 3968 – 3972; Angew. Chem. Int. Ed. 2001, 40, 3849 – 3854;
b) K. C. Nicolaou, Y. Li, K. C. Fylaktakidou, H. J. Mitchell, K.
Sugita, Angew. Chem. 2001, 113, 3972 – 3976; Angew. Chem. Int.
Ed. 2001, 40, 3854 – 3857; c) K. C. Nicolaou, K. C. Fylaktakidou,
H. Monenschein, Y. Li, B. Weyershausen, H. J. Mitchell, H. X.
Wei, P. Guntupalli, D. Hepworth, K. Sugita, J. Am. Chem. Soc.
2003, 125, 15433 – 15442; d) K. C. Nicolaou, Y. Li, K. Sugita, H.
Monenschein, P. Guntupalli, H. J. Mitchell, K. C. Fylaktakidou,
D. Vourloumis, P. Giannakakou, A. OꢀBrate, J. Am. Chem. Soc.
2003, 125, 15443 – 15454.
[8] Fragment syntheses: a) G. A. Sulikowski, W. M. Lee, B. Jin, B.
Wu, Org. Lett. 2000, 2, 1439 – 1442; b) K. Toshima, T. Arita, D.
Tanaka, S. Matsumura, Tetrahedron Lett. 2001, 42, 8873 – 8876;
c) W. D. Paquette, R. E. Taylor, Org. Lett. 2004, 6, 103 – 106.
[9] a) J. Schuppan, H. Wehlan, S. Keiper, U. Koert, Angew. Chem.
2001, 113, 2125 – 2128; Angew. Chem. Int. Ed. 2001, 40, 2063 –
2066; b) J. Schuppan, B. Ziemer, Tetrahedron Lett. 2000, 41, 621 –
624.
[10] G. Jung, A. Klerner, Chem. Ber. 1981, 114, 740 – 745.
[11] a) R. Preuss, R. R. Schmidt, Synthesis 1988, 694 – 697; b) W. R.
Roush, X. F. Lin, J. Org. Chem. 1991, 56, 5740 – 5742.
[12] A related route to the 6-deoxy-l-glucose building block was
chosen by Nicolaou et al.[7a,c]
[13] I. Bajza, A. Liptak, Carbohydr. Res. 1990, 205, 435 – 439.
[14] CCDC 234809 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[15] D. Kahne, S. Walker, Y. Cheng, D. VanEngen, J. Am. Chem. Soc.
1989, 111, 6881 – 6882.
[16] 1,4-Dichloro-1,1,4,4-tetraphenyl-1,4-disilabutane (SIBACl2) was
prepared by reaction of 1,2-bis(trichlorosilyl)ethane with phe-
nylmagnesium bromide.
[17] J. Thiem, J. Elvers, Chem. Ber. 1980, 113, 3049 – 3057.
[18] G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118,
2748 – 2749.
[19] A. S. Pilcher, D. K. Hill, S. J. Shimshock, R. E. Waltermire, P.
DeShong, J. Org. Chem. 1992, 57, 2492 – 2495.
The cross-coupling of either the northern half, 29 or 30,
with the southern half 37 was possible with CuI thiophene-2-
carboxylate in NMP (Scheme 6).[18] The methyl ester coupling
product caused trouble in the subsequent methyl ester
hydrolysis. We therefore focused on the cyanomethyl ester
coupling product 38. The cyanomethyl ester function in 38
could be hydrolyzed under very mild conditions (LiOH, 208C,
2 h) to the acid 39 without affecting the triene system or the
TES protecting groups. A remarkable ring-size-selective
macrolactonization of 39 produced the 20-membered lactone
40 in 75% yield. The final deprotection step required a
careful examination of reagents and optimization of reaction
conditions. The use of HF/pyridine in THF/pyridine at room
temperature for 5 d cleaved all silyl ethers but left the methyl
ketal intact and gave synthetic 21-o-methyl apoptolidin (2)
which proved to be identical with 2 derived from natural
sources ([a]22 = ꢀ76 (c = 0.55 in CHCl3),[5] [a]2D2 = ꢀ67 (c =
D
1.28 in CHCl3); for 1H and 13C NMR data see the Supporting
Information).
We then turned our attention to the complete deprotec-
tion of 40 leading to apoptolidin (1). Treatment with 25%
aqueous H2SiF6 in CH3CN at ꢀ40!ꢀ108C proved to be
effective for cleavage of all silyl ethers[19] and noteworthy the
methyl ketal. Apoptolidin (1) could be isolated in 71% yield
by chromatographic separation on deactivated silica gel[20]
with CH2Cl2/MeOH. In addition, the cleavage of the 27-O-
disaccharide was observed and compound 41 was isolated in
27% yield. The physical and spectroscopic data of the
synthetic apoptolidin (1) matched those published by Haya-
kawa et al. (m.p. 129–1318C (MeOH), ref. [2]: 128–1308C;
([a]2D2 = ꢀ4.4 (c = 0.70 in MeOH), ref. [2] [a]2D2 = ꢀ5.2 (c = 1.0
1
in MeOH); for H and 13C NMR data see the Supporting
Information).
In conclusion an efficient, convergent, and stereoselective
total synthesis of apoptolidin has been achieved. The distinct
features of this synthesis are the early introduction of the
sugar residues using a new sugar protecting group (SIBA), a
CuI-mediated cross-coupling followed by a ring-size-selective
macrolactonization, and mild deprotection conditions. This
strategy should be applicable to the synthesis of apoptolidin
derivatives with potential applications in apoptosis studies
and tumor therapy.
[20] Chromatotrex silicagel MB 100-40/75 from Fuji Silysia Chemical
LTD.
Received: March 31, 2004
Angew. Chem. Int. Ed. 2004, 43, 4597 –4601
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4601