C O M M U N I C A T I O N S
sites allows the rational synthesis of novel and unusual derivatives
that cannot be prepared otherwise.
Acknowledgment. We thank the MCYT/MECD of Spain for
a grant (to M.A.) and financial support (BQU2003-05471).
Supporting Information Available: Experimental procedures and
spectroscopic data for new compounds (PDF); crystallographic data
for compounds 1, 2c, 3, and 4b (CIF). This material is available free
Figure 2. Molecular structure of compounds 3 (left) and 4b (right). Methyl
groups are omitted for clarity.
relevant changes are a substantial increase in the PsO distance
[1.671(3) Å, a value typical of single PsO bonds], and a slight
decrease in the MosP distance [2.196(1) Å]. These structural
features are similar to those found for [MoCp{PCH(SiMe3)2}(OEt)-
(CO)2], a related complex prepared by reaction of EtOH on a
phosphavinylidene precursor.12
References
(1) (a) Lammertsma, K.; Vlaar, M. J. M. Eur. J. Org. Chem. 2002, 1127-
1138. (b) Mathey, F.; Tran Huy, N. H.; Marinetti, A. HelV. Chim. Acta
2001, 84, 2938-2957. (c) Shah, S.; Protasiewicz, J. D. Coord. Chem.
ReV. 2000, 210, 181-201. (d) Schrock, R. R. Acc. Chem. Res. 1997, 30,
9-16. (e) Cowley, A. H. Acc. Chem. Res. 1997, 30, 445-451. (f) Huttner,
G.; Knoll, K. Angew. Chem., Int. Ed. Engl. 1987, 26, 743-759.
The hydroxoderivative 2a can be further protonated with HBF4‚
OEt2 to give the fluorophosphide complex [MoCp(PFR*)(CO)2]
(3), after elimination of water and fluoride abstraction from the
(2) Dillon, K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy.
Wiley: New York, USA, 1998.
(3) Schoeller, W. W.; Niecke, E. Chem. Commun. 1982, 569-570.
-
BF4 anion.13 The structure of this molecule is similar to that of
(4) (a) Gaspar, P. P.; Qian, H.; Beatty, A. M.; d’Avignon, D. A.; Kao, J. L.
F.; Watt, J. C.; Rath, N. P. Tetrahedron 2000, 56, 105-119 and references
therein. (b) Cowley, A. H.; Gabba¨ı, F. P.; Corbelin, S.; Decken, A. Inorg.
Chem. 1995, 34, 5931-5932. (c) Wang, K.; Emge, T. J.; Goldman, A. S.
Organometallics 1994, 13, 2135-2137. (d) Niecke, E.; Zorn, H.; Krebs,
B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 709-710.
(5) (a) Niecke, E.; Engelmann, M.; Zorn, H.; Krebs, B.; Henkel, G. Angew.
Chem., Int. Ed. Engl. 1980, 19, 710-712. (b) Hitchcock, P. B.; Johnson,
J. A.; Lemos, M. A. N. D. A.; Meidine, M. F.; Nixon, J. F.; Pombeiro, A.
J. L. J. Chem. Soc., Chem. Commum. 1992, 645-646. (c) Johnson, M. J.
A.; Odom, A. L.; Cummins, C. C. Chem. Commum. 1997, 1523-1524.
(d) Kourkine, V.; Glueck, D. S. Inorg. Chem. 1997, 36, 5160-5164. (e)
Schmitt, G.; Ullrich, D.; Wolmersha¨user, G.; Regitz, M.; Scherer, O. J.
Z. Anorg. Allg. Chem. 1999, 625, 702-704. (f) Buchholz, D.; Huttner,
G.; Imhof, W. J. Organomet. Chem. 1990, 388, 307-320.
the alkoxyphosphide 2c, displaying a quite short MosP distance
[2.2037(12) Å] (Figure 2).14 Compound 3 appears to be the first
complex reported with a trigonal fluorophosphide (PFR) ligand,
although a few related chlorophosphide complexes are known.15
Carbon-based electrophiles can alternatively attack the P site in
1. This is the dominant reaction pathway when using milder
electrophiles such as MeI or C3H5Br, which then give the respective
phosphinite derivatives [MoCp(κ2-OPRR*)(CO)2] (R ) Me, 4a;
C3H5, 4b).16 These are the first complexes reported to have a P,O-
bound phosphinite ligand. Separate experiments showed that the
isomeric methyl derivatives 2b and 4a did not interconvert even in
refluxing toluene. This proves that compounds 2 and 4 arise from
independent reaction pathways. An X-ray study on 4b revealed an
unusual environment in the phosphinite ligand, with the P(3), C(3),
and C(31) atoms almost placed in a plane and close to that one
bisecting the MoCp(CO)2 moiety, and the O(3) atom also bonded
to molybdenum (Figure 2).17 This results in a strained MoPO ring
with internuclear separations suggesting single (MosO) or inter-
mediate (between single and double) bonds (MosP and PsO).
Similar structural effects have been reported for related thiophos-
phinite complexes.18
(6) Marinetti, A.; Mathey, F. Organometallics 1987, 6, 2189-2191.
(7) (a) Garc´ıa, M. E.; Riera, V.; Ruiz, M. A.; Sa´ez, D.; Vaissermann, J.;
Jeffery, J. C. J. Am. Chem. Soc. 2002, 124, 14304-14305. (b) Garc´ıa,
M. E.; Riera, V.; Ruiz, M. A.; Sa´ez, D.; Hamidov, H.; Jeffery, J. C.;
Riis-Johannessen, T. J. Am. Chem. Soc. 2003, 125, 13044-13045.
(8) Selected spectroscopic data for 1: νCO (CH2Cl2) 1874 (vs), 1790 (s) cm-1
.
31P{1H} NMR (CD2Cl2) δ 385.0 ppm.
(9) X-ray data for 1: Yellow-orange crystals, orthorhombic. (P212121), a )
9.5709(15), b ) 17.391(3), c ) 20.501(3) Å, V ) 3412.4(9) Å3, T ) 173
K, Z ) 4, R ) 4.42, GOF ) 0.933.
(10) Selected spectroscopic data for 2b: νCO (CH2Cl2) 1935 (vs), 1856 (s)
cm-1 31P{1H} NMR(CD2Cl2) δ 350.5 ppm. 13C{1H} NMR(CD2Cl2) δ
.
238.5 (d, JCP ) 20, CO), 55.7 (s, OCH3) ppm.
(11) X-ray data for 2c: dark red crystals, orthorhombic (Pbca), a ) 17.1829-
(15), b ) 13.0958(11), c ) 27.663(2) Å, V ) 6224.8(9) Å3, T ) 173 K,
Z ) 8, R ) 6.51, GOF ) 0.944.
Anion 1 also displays dual behavior when reacting with metal-
based electrophiles, as illustrated through the reactions with [ZrCl2-
Cp2] and SnClPh3. The zirconium fragment binds to the O atom
giving the P,O-bridged [MoCp{P(OZrClCp2)R*}(CO)2] (5).19 The
tin fragment, however, binds to the Mo atom to give [MoCp{P(O)-
R*}(CO)2(SnPh3)] (6), which displays a terminal P(O)R* ligand
and trans-dicarbonyl geometry.20 The formation of 5 provides a
new route to heterometallic complexes bridged by the phosphinidene
oxide ligand, of which only one compound has been reported so
far.5c In addition, the formation of 6 indicates that 1 has a third
nucleophilic position located at the metal atom, and this allows
the preparation of new neutral complexes with terminal RsPdO
groups. Because of the multiple nature of the MosP bond in these
species, it is expected that they can display some carbene-like
reactivity. Currently we are exploring this possibility and extending
the electrophiles under study to unravel the factors governing the
complex nucleophilicity of anion 1.
(12) Arif, A. M.; Cowley, A. H.; Nunn, C. M.; Quashie, S. Organometallics
1989, 8, 1878-1884.
(13) Selected spectroscopic data for 3: νCO (CH2Cl2) 1959 (vs), 1884 (s) cm-1
.
31P{1H} NMR δ 323.8 (d, JPF ) 1132 Hz) ppm.
(14) X-ray data for 3: Red crystals, monoclinic (P21/c), a ) 20.947(2), b )
10.4889(10), c ) 11.5591(12) Å, â ) 102.708(2)°, V ) 2477.4(4) Å3, T
) 173 K, Z ) 4, R ) 5.67, GOF ) 0.969.
(15) (a) Cowley, A. H.; Giolando, D. M.; Nunn, C. M.; Pakulski, M.;
Westmoreland, D.; Norman, N. C. J. Chem. Soc., Dalton Trans. 1988,
2127-2134. (b) Malisch, W.; Hirth, U. A.; Gru¨n, K.; Schmeuâer, M. J.
Organomet. Chem. 1999, 572, 207-212.
(16) Selected spectroscopic data for 4a: νCO (CH2Cl2) 1940 (vs), 1850 (s) cm-1
.
31P{1H} NMR(CD2Cl2) δ 28.3 ppm. 13C{1H} NMR(CD2Cl2) δ 255.8 (d,
JCP ) 26, CO), 246.0 (s, CO), 23.8 [d, JCP ) 27, PCH3] ppm.
(17) X-ray data for 4b: Red crystals, triclinic P1h, a ) 9.2708(3), b ) 12.0224-
(4), c ) 14.3208(5) Å, R ) 84.8940(10), â ) 77.0620(10), γ ) 75.5350-
(10)°, V ) 1505.40(9) Å3, T ) 173 K, Z ) 2, R ) 2.41, GOF ) 0.982.
(18) (a) Alper, H.; Einstein, F. W. B.; Hartstock, F. W.; Jones, R. H.
Organometallics 1987, 6, 829-833. (b) Malisch, W.; Gru¨n, K.; Hirth, U.
A.; Noltemeyer, M. J. Organomet. Chem. 1996, 513, 31-36. (c) Reisacher,
H. U.; McNamara, W. F.; Duesler, E. N.; Paine, R. T. Organometallics
1997, 16, 449-455.
(19) Selected spectroscopic data for 5: νCO (CH2Cl2) 1921 (vs), 1841 (s) cm-1
.
The present work is the first study on the reactivity of a
coordinated phosphinidene oxide ligand. The anion 1 has a
terminally bound RsPdO ligand and displays unique acid/base
properties, with three different nucleophilic sites located at the O,
P, and Mo atoms. The binding of different electrophiles to these
1H NMR (CD2Cl2) δ 6.39 (s, 10H, ZrCp) 5.12 (s, 5H, MoCp) ppm. 31P-
{1H} NMR (CD2Cl2) δ 350.3 ppm.
(20) Selected spectroscopic data for 6: νCO (CH2Cl2) 1947 (s), 1889 (vs) cm-1
31P{1H} NMR (CD2Cl2) δ 468.1 (J119SnP ) J117SnP ) 116 Hz) ppm.
.
JA045487G
9
J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004 13611