Organic Letters
Letter
P.; Segura, J. Recent Developments in γ-Lactone Synthesis. Mini-Rev.
Org. Chem. 2009, 6, 345−358.
eupomatilone-6. This represents one of the shortest asym-
metric syntheses of eupomatilones family of lignans reported to
date. The extension of this transformation in furthering the
exploration of natural products is in progress, and the
continued examination for more concise and facile access to
chiral γ-lactones and tetrahydrofurans will be disclosed in due
course.
(5) (a) Brunner, M.; Alper, H. The First Stereoselective Palladium-
Catalyzed Cyclocarbonylation of β,γ-Substituted Allylic Alcohols. J.
Org. Chem. 1997, 62, 7565−7568. (b) Li, Y.; Zhao, Z.-A.; He, H.;
You, S.-L. Stereoselective Synthesis of γ-Butyrolactones via Organo-
catalytic Annulations of Enals and Keto Esters. Adv. Synth. Catal.
2008, 350, 1885−1890. (c) Cardinal-David, B.; Raup, D. E. A.;
Scheidt, K. A. Cooperative N-Heterocyclic Carbene/Lewis Acid
Catalysis for Highly Stereoselective Annulation Reactions with
Homoenolates. J. Am. Chem. Soc. 2010, 132, 5345−5347.
(d) Yanagisawa, A.; Kushihara, N.; Yoshida, K. Catalytic Enantiose-
lective Synthesis of Chiral γ-Butyrolactones. Org. Lett. 2011, 13,
1576−1578. (e) Manoni, F.; Cornaggia, C.; Murray, J.; Tallon, S.;
Connon, S. J. Catalytic, enantio- and diastereoselective synthesis of γ-
butyrolactones incorporating quaternary stereocentres. Chem. Com-
mun. 2012, 48, 6502−6504.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Full experimental details and copies of 1H and 13C NMR
(6) (a) Kowalski, C. J.; Fields, K. W. Alkynolate Anions via a New
Rearrangement: The Carbon Analogue of the Hofmann Reaction. J.
Am. Chem. Soc. 1982, 104, 321−323. (b) Kowalski, C. J.; Haque, M.
S.; Fields, K. W. Ester Homologation via α-Bromo α-Keto Dianion
Rearrangement. J. Am. Chem. Soc. 1985, 107, 1429−1430.
(c) Kowalski, C. J.; Haque, M. S. Aldehydes, Alcohols, and Enol
Acetates via Reductive Homologation of Esters. J. Am. Chem. Soc.
1986, 108, 1325−1327. (d) Kowalski, C. J.; Lal, G. S. 1-Acetoxy and
1-Silyloxy-1,3-dienes via Reductive Homologation of α,β-Unsaturated
Esters. Tetrahedron Lett. 1987, 28, 2463−2466. (e) Kowalski, C. J.;
Lal, G. S.; Haque, M. S. Ynol Silyl Ethers via O-Silylation of Ester-
Derived Ynolate Anions. J. Am. Chem. Soc. 1986, 108, 7127−7128.
(f) Kowalski, C. J.; Reddy, R. E. Ester Homologation Revisited: A
Reliable, Higher Yielding and Better Understood Procedure. J. Org.
Chem. 1992, 57, 7194−7208.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by National Research Foundation
of Korea (NRF) grants funded by the Korea government
(MSIT; No. 2019R1H1A1079670).
(7) For synthetic applications of Kowalski ester homologation, see:
(a) Chen, P.; Cheng, P. T. W.; Spergel, S. H.; Zahler, R.; Wang, X.;
Thottathil, J.; Barrish, J. C.; Polniaszek, R. P. A Practical Method for
the Preparation of α’-Chloroketones of N-Carbamate Protected-α-
Aminoacids. Tetrahedron Lett. 1997, 38, 3175−3178. (b) Gray, D.;
REFERENCES
■
́
Concellon, C.; Gallagher, T. Kowalski Ester Homologation.
(1) For reviews on biological properties of γ-butyrolactones, see:
(a) Seitz, M.; Reiser, O. Synthetic approaches towards structurally
diverse γ-butyrolactone natural-product-like compounds. Curr. Opin.
Chem. Biol. 2005, 9, 285−292. (b) Ottow, E. A.; Brinker, M.;
Teichmann, T.; Fritz, E.; Kaiser, W.; Brosche, M.; Kangasjarvi, J.;
Jiang, X.; Polle, A. Populus euphratica Displays Apoplastic Sodium
Accumulation, Osmotic Adjustment by Decreases in Calcium and
Soluble Carbohydrates, and Develops Leaf Succulence under Salt
Stress. Plant Physiol. 2005, 139, 1762−1772.
Application to the Synthesis of β-Amino Esters. J. Org. Chem. 2004,
́
́
69, 4849−4851. (c) Tebeka, I. R. M.; Longato, G. B.; Craveiro, M. V.;
de Carvalho, J. E.; Ruiz, A. L. T. G.; Silva, L. F., Jr. Total Synthesis of
(+)-trans-Trikentrin A. Chem. - Eur. J. 2012, 18, 16890−16901.
(d) Chen, H.; Ding, C.; Wild, C.; Liu, H.; Wang, T.; White, M. A.;
Cheng, X.; Zhou, J. Efficient synthesis of ESI-09, a novel non-cyclic
nucleotide EPAC antagonist. Tetrahedron Lett. 2013, 54, 1546−1549.
(8) (a) Smith, A. B., III; Kozmin, S. A.; Paone, D. V. Total Synthesis
of (−)-Cylindrocyclophane F. J. Am. Chem. Soc. 1999, 121, 7423−
7424. (b) Smith, A. B., III; Adams, C. M.; Kozmin, S. A.; Paone, D. V.
Total Synthesis of (−)-Cylindrocyclophanes A and F Exploiting the
Reversible Nature of the Olefin Cross Metathesis Reaction. J. Am.
Chem. Soc. 2001, 123, 5925−5937.
́
̈
(2) For reviews, see: (a) Negishi, E.; Kotora, M. Regio- and
Stereoselective Synthesis of γ-Alkylidenebutenolide and Related
Compounds. Tetrahedron 1997, 53, 6707−6738. (b) Faul, M. M.;
Huff, B. E. Strategy and Methodology Development for the Total
Synthesis of Polyether Ionophore Antibiotics. Chem. Rev. 2000, 100,
2407−2474. (c) Carter, N. B.; Nadany, A. E.; Sweeney, J. B. Recent
developments in the synthesis of furan-2(5H)-ones. J. Chem. Soc.,
Perkin Trans. 1 2002, 2324−2342. (d) Bandichhor, R.; Nosse, B.;
Reiser, O. Paraconic Acids−The Natural Products from Lichen
Symbiont. Top. Curr. Chem. 2005, 243, 43−72. (e) Kitson, R. R. A.;
Millemaggi, A.; Taylor, R. J. K. The Renaissance of α-Methylene-γ-
butyrolactones: New Synthetic Approaches. Angew. Chem., Int. Ed.
2009, 48, 9426−9451. (f) Lorente, A.; Lamariano-Merketegi, J.;
(9) Corey, E. J.; Fuchs, P. L. A synthetic method for formyl→ethynyl
conversion. Tetrahedron Lett. 1972, 13, 3769−3772.
(10) For reviews on Fritsch−Buttenberg−Wiechell rearrangement,
see: (a) Knorr, R. Alkylidenecarbenes, Alkylidenecarbenoids, and
Competing Species: Which Is Responsible for Vinylic Nucleophilic
Substitution, [1 + 2] Cycloadditions, 1,5-CH Insertions, and the
Fritsch−Buttenberg−Wiechell Rearrangement? Chem. Rev. 2004, 104,
3795−3850. (b) Jahnke, E.; Tykwinski, R. R. The Fritsch−
Buttenberg−Wiechell rearrangement: modern applications for an
old reaction. Chem. Commun. 2010, 46, 3235−3249.
́
Albericio, F.; Alvarez, M. Tetrahydrofuran-Containing Macrolides: A
Fascinating Gift from the Deep Sea. Chem. Rev. 2013, 113, 4567−
4610.
(3) For a recent review, see: Mao, B.; Fan
B. L. Catalytic Asymmetric Synthesis of Butenolides and Butyr-
olactones. Chem. Rev. 2017, 117, 10502−10566. See also references
cited therein.
(4) (a) Paryzek, Z.; Skiera, I. Synthesis and Cleavage of Lactones
and Thiolactones. Applications in Organic Synthesis. A Review. Org.
Prep. Proced. Int. 2007, 39, 203−296. (b) Gil, S.; Parra, M.; Rodriguez,
(11) For reviews on oxazolidinone, oxazolidinethione, and
thiazolidinethione chiral auxiliaries, see: (a) Cowden, C. J.;
Paterson, I. Asymmetric Aldol Reactions Using Boron Enolates.
Org. React. 1997, 51, 1−200. (b) Fujita, E.; Nagao, Y. Chiral
Induction Using Heterocycles. Adv. Heterocycl. Chem. 1989, 45, 1−36.
(12) Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective Aldol
Condensations. 2. Erythro-Selective Chiral Aldol Condensations via
Boron Enolates. J. Am. Chem. Soc. 1981, 103, 2127−2129.
́
̃
anAs-Mastral, M.; Feringa,
E
Org. Lett. XXXX, XXX, XXX−XXX