LETTER
A Brief Total Synthesis of Eupolauramine
2235
(13) (a) Katritzky, A. R.; Yang, Z.; Lam, J. N. J. Org. Chem.
1991, 56, 6917. (b) Katritzky, A. R.; Qi, M. Tetrahedron
1998, 54, 2647. (c) Katritzky, A. R.; Qi, M.; Feng, D.;
Nichols, D. A. J. Org. Chem. 1997, 62, 4121.
(14) (a) Katritzky, A. R.; Ignatchenko, A. V.; Lang, H. J. Org.
Chem. 1995, 60, 4002. (b) Katritzky, A. R.; Ignatchenko, A.
V.; Lang, H. Synth. Commun. 1995, 25, 1197. (c) Deniau,
E.; Enders, D. Tetrahedron Lett. 2002, 43, 8055.
In summary, we have completed a concise synthesis of
eupolauramine. The advantage of this synthesis lies in the
ease of elaboration of the intermediates involved in the as-
sembly of this alkaloid and the reported synthetic tactics
emphasize the high versatility and potential of the benzo-
triazole as a temporary auxiliary for synthetic purposes.
(15) Ahmed, I.; Cheeseman, G. W. H.; Jaques, B. Tetrahedron
1979, 35, 1145.
Acknowledgment
(16) (a) Nicolaou, K. C.; Maligres, P.; Suzuki, T.; Wendeborn, S.
V.; Dai, W. M.; Chadha, R. K. J. Am. Chem. Soc. 1992, 114,
8890. (b) Cloninger, M. J.; Whitlock, H. W. J. Org. Chem.
1998, 63, 6153.
This research was supported by the CNRS and MENESR. Also we
acknowledge helpful discussions and advice from Dr. T. G. C. Bird
(Astra-Zeneca Pharma).
(17) All new compounds have been fully characterized. 1H NMR
(300 MHz, CDCl3), 13C NMR and APT spectral data (75
MHz, CDCl3) and elemental analysis of the key
References
(1) Carroll, A. R.; Taylor, W. C. Aust. J. Chem. 1991, 44, 1615.
(2) Bowden, B. F.; Ritchie, E.; Taylor, W. C. Aust. J. Chem.
1972, 25, 2659.
(3) (a) Shamma, M.; Moniot, J.-L. Isoquinoline Alkaloids
Research 1972-1977; Plenum Press: New York, 1978, 393–
394. (b) Mix, D. B.; Guinaudeau, H.; Shamma, M. J. Nat.
Prod. 1982, 45, 657.
intermediates for Compound 10: white solid, mp 176–
177 °C. 1H NMR: d = 1.12 (s, 9 H, 3 CH3), 2.83 (s, 3 H,
NCH3), 5.89 (d, J = 8.3 Hz, 1 H, ArH), 6.15 (d, J = 7.8 Hz,
1 H, ArH), 6.81 (t, J = 7.8 Hz, 1 H, ArH), 7.06 (t, J = 6.8 Hz,
1 H, ArH), 7.17 (t, J = 7.8 Hz, 1 H, ArH), 7.24–7.36 (m, 2 H,
ArH + CHOC=O), 7.55 (d, J = 8.3 Hz, 1 H, ArH), 7.76 (d,
J = 4.8 Hz, 1 H, ArH), 8.11–8.14 (m, 1 H, ArH), 9.05 (d,
J = 4.8 Hz, 1 H, ArH), 9.17 (s, 1 H, ArH). 13C NMR: d = 27.0
(3 CH3), 27.9 (CH3), 38.6 (C), 74.4 (CH), 83.4 (C), 109.9
(CH), 117.7 (CH), 122.0 (CH), 124.8 (CH), 125.6 (C), 126.8
(CH), 128.6 (CH), 128.7 (CH), 130.8 (CH), 131.4 (C), 132.5
(C), 133.8 (CH), 135.6 (C), 140.7 (C), 145.6 (CH), 146.6
(C), 151.1 (CH), 165.1 (C), 175.7 (C). Anal. Calcd for
C26H24BrN5O3 (534.42): C, 58.44; H 4.53; N, 13.10. Found:
C, 58.79; H, 4.84; N, 13.37. Compound Z-3: white solid, mp
169–170 °C. 1H NMR: d = 1.25 (s, 9 H, 3 CH3), 3.55 (s, 3 H,
NCH3), 7.25–7.47 (m, 3 H, ArH), 7.64–7.76 (m, 3 H, ArH),
8.64 (d, J = 4.9 Hz, 1 H, ArH). 13C NMR: d = 26.8 (3 CH3),
29.4 (CH3), 39.3 (C), 116.8 (CH), 124.5 (C), 127.4 (C),
127.9 (CH), 130.0 (C), 131.8 (C), 132.0 (CH), 133.7 (CH),
134.3 (C), 134.4 (CH), 135.8 (C), 143.9 (CH), 149.3 (CH),
165.4 (C), 176.4 (C). Anal. Calcd for C20H19BrN2O3
(415.29): C, 57.84; H, 4.61; N, 6.75. Found: C, 57.61; H,
4.54; N, 6.47.
(4) Kawase, M.; Yuko, M.; Sakamoto, T.; Shimada, M.;
Kikugawa, Y. Tetrahedron 1989, 45, 1653.
(5) Kikugawa, Y.; Kawase, M.; Yuko, M.; Sakamoto, T.;
Shimada, M. Tetrahedron Lett. 1988, 29, 4297.
(6) Levin, J. I.; Weinreb, S. M. J. Org. Chem. 1984, 49, 4325.
(7) Levin, J. I.; Weinreb, S. M. J. Am. Chem. Soc. 1983, 105,
1397.
(8) Karuso, P.; Taylor, W. C. Aust. J. Chem. 1984, 37, 1271.
(9) Kitahara, Y.; Mochii, M.; Mori, M.; Kubo, A. Tetrahedron
2003, 59, 2885.
(10) Hoarau, C.; Couture, A.; Cornet, H.; Deniau, E.;
Grandclaudon, P. J. Org. Chem. 2001, 66, 8064.
(11) Goehring, R. R. Tetrahedron Lett. 1992, 33, 6045.
(12) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem.
Rev. 1998, 98, 409.
Synlett 2004, No. 12, 2233–2235 © Thieme Stuttgart · New York