H. Kiyota et al. / Tetrahedron Letters 45 (2004) 8191–8194
8193
NHZ
OTIPS
OH
This work was partially supported by a Grant-in-aid
for Scientific Research from Japan Society for the
Promotion of Science (No. 14760069), The Agricultural
Chemical Research Foundation, Intelligent Cosmos
Foundation and The Naito Foundation.
NHZ
OTIPS
OH
BnO
BnO
RO
BnO
BnO
a
b
O
O
O
O
OH
O
OH
14
β
(95%de)
22
NHZ
OH
NHZ
OMs
OH
TBSO
O
c
OBn
d
References and notes
OBn
N
N
O
1. Wolf, F. A.; Foster, A. C. Science 1917, 46, 361–362.
2. (a) Woolley, D. W.; Shaffner, G.; Braun, A. C. J. Biol.
Chem. 1955, 215, 485–493, and references cited therein; (b)
Stewart, W. W. Nature 1971, 229, 174–178; (c) Taylor, P.
A.; Schnoes, H. K.; Durbin, R. D. Biochim. Biophys. Acta
1972, 286, 107–117; (d) Durbin, R. D.; Uchytil, T. F.;
Steele, J. A.; Ribeiro, R. de L. D. Phytochemistry 1978, 17,
147.
3. (a) Uchytil, T. F.; Durbin, R. D. Experientia 1980, 36,
301302; (b) Thomas, D. M.; Langston-Unkefer, P. J.;
Uchytil, T. F.; Durbin, R. D. Plant Physiol. 1983, 71, 912–
915, and references cited therein.
4. (a) Anzai, H.; Yoneyama, K.; Yamaguchi, I. Mol. Gen.
Genet. 1989, 219, 492–494; (b) Batchvarova, R.; Nikola-
eva, V.; Slavov, S.; Bossolova, S.; Valkov, V.; Atanassova,
S.; Guelemerov, S.; Atanassov, A.; Anzai, H. Theor. Appl.
Genet. 1998, 97, 986–989.
H
H
23
24
(~100%de)
NHZ
NH
2
OTBS
N
OH
HO
e
O
NH
O
O
O
OBn
25: R = Bn
+ 26: R = H
tabtoxinine-β-lactam (1)
26
[α]
–24˚ (c 0.14, H O)
2
D
26
Dolle: [α]
–23.7˚ (c 0.30, H O)
2
D
NH
2
OH
26
[α]
+38˚ (c 0.09, H O)
2
D
HO
26
Dolle: [α]
+35.0˚
D
14α(94%de)
NH
(c 0.22, H O)
O
2
O
(3'R)-1
Scheme 4. Synthesis of (ꢀ)-1 and (+)-(30R)-1: (a) TEMPO, NaClO,
NaClO2, MeCN/H2O, rt, 12h (89%); (b) i. NH2OBnÆHCl, NaHCO3,
HOBt, EDCI, 0°C to rt, 12h (95%), ii. TBAF, THF; 0°C, 1h (86%);
(c) i. MsCl, Et3N, CHCl3, rt, 12h, ii. recrystallization (91%), iii.
TBSOTf, 2,6-lutidine, CH2Cl2, rt, 2h (88%); (d) KHMDS, THF, ꢀ78
to 0°C, 24h (59% of 25 and 11% of 26); (e) i. TBAF, THF, 0°C, ii. H2,
Raney-Ni, H2O–MeOH (1:2) (89% from 25 and 68% from 26).
5. (a) Liu, J.; Le, Y.; Ye, B.; Zhen, Y.; Zhu, C.; Shen, J.;
Zhang, R. Protein Expres. Purif. 2002, 24, 439–444; (b)
He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.;
Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.;
Rao, Z. J. Mol. Biol. 2003, 325, 1019–1030.
6. (a) Baldwin, J. E.; Otsuka, M.; Wallace, P. M. J. Chem.
Soc., Chem. Commun. 1985, 1549–1550; (b) Baldwin, J. E.;
Otsuka, M.; Wallace, P. M. Tetrahedron 1986, 42, 3097–
3110; (c) Doll, R. E.; Li, C.-S.; Novelli, R.; Kruse, L. I.;
Eggleston, D. J. Org. Chem. 1992, 57, 128–132.
7. (a) Snyder, B. B.; Johnston, M. I. Synth. Commun. 1987,
17, 1877–1886; (b) Greenlee, W. J.; Springer, J. P.;
Patchett, A. A. J. Med. Chem. 1989, 32, 165–170.
8. (a) Baldwin, J. E.; Bailey, P. D.; Gallacher, G.; Singleton,
K. A.; Wallace, P. M. J. Chem. Soc., Chem. Commun.
1983, 1049–1050; (b) Baldwin, J. E.; Bailey, P. D.;
Gallacher, G.; Otsuka, M.; Singleton, K. A.; Wallace,
P. M. Tetrahedron 1984, 40, 3695–3708.
hydroxy group was protected as a TBS ether to afford
24; a TMS group at this position was unable to with-
stand the conditions of the next step. b-Lactam forma-
tion was achieved using KHMDS to give 25, with
debenzylated acid 26 as a by-product. Use of NaH in-
creased the yield of 26.25 TBS deprotection of 25 and
26 followed by hydrogenolysis on Raney-Ni gave (ꢀ)-
1.26 The product was to be diastereomerically pure
and the value of specific optical rotation was in good
26
D
agreement with the literature value {½aꢁ ꢀ24 (c 0.14,
9. Lee, D. L.; Rapoport, H. J. Org. Chem. 1975, 40, 3491–
3495.
25
H2O), lit.6c ½aꢁ ꢀ23:7 (c 0.30, H2O)}. The overall yield
D
was 28% in 12 steps from 5 and 24% in 15 steps from L-
serine.
´
10. Barton, D. H. R.; Herve, Y.; Potier, P.; Thierry, J.
Tetrahedron 1987, 43, 4297–4308.
11. (a) Baldwin, J. E.; Adlington, R. M.; Birch, D. J.;
Crawford, J. A.; Sweeney, J. B. J. Chem. Soc., Chem.
Commun. 1986, 1339–1340; (b) Adlington, R. M.; Bald-
win, J. E.; Basak, A.; Kozyrod, R. P. J. Chem. Soc., Chem.
Commun. 1983, 944–945.
In a similar manner as described for (ꢀ)-1, (30R)-isomer
25
H2O), lit.6c ½aꢁ ꢀ38:0 (c 0.22, H2O)}. The overall yield
D
was 12% from 5.
25
(+)-(30R)-1 was synthesized from 14a {½aꢁ þ38 (c 0.09,
D
12. (a) Dexter, C. S.; Jackson, R. F. W. J. Org. Chem. 1999,
64, 7579–7585; (b) Weigand, S.; Bruckner, R. Synthesis
1996, 475–482.
¨
In summary the stereoselective synthesis of (ꢀ)-tabtox-
inine-b-lactam (ꢀ)-1, a phytopathogenic compound of
tobacco wildfire disease, and its (+)-(30R)-isomer was
achieved using zinc-mediated coupling, Sharpless asym-
metric dihydroxylation, and b-lactam formation of
hydroxamate as the key steps.
13. Villieras, J.; Rambaud, M. Synthesis 1982, 924–926.
14. (a) Pringle, W.; Sharpless, K. B. Tetrahedron Lett. 1999,
40, 5151–5154; (b) OꢀBrien, P. Angew. Chem., Int. Ed.
Engl. 1999, 38, 326–329.
15. (a) Kolb, H. C.; Van Nioeuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547; (b) Hale, K. J.; Mana-
viazar, S.; Peak, S. A. Tetrahedron Lett. 1994, 35, 425–
428.
Acknowledgements
16. Loewe, M. F.; Cvetovich, R. J.; Hazen, G. G. Tetrahedron
Lett. 1991, 32, 2299–2302.
We thank Dr. Yoshifumi Itoh [Akita Research Institute
of Food and Brewing (ARIF)] for academic assistance.
17. Ohno, M.; Kobayashi, S.; Iimori, T.; Wang, Y.; Izawa, T.
J. Am. Chem. Soc. 1981, 103, 2405–2406.