ACS Catalysis
Research Article
Anal. Calcd for C54H52Cl6Cr2P4 (%): C, 56.81; H, 4.59. Found:
C, 57.02; H, 4.25.
AUTHOR INFORMATION
■
Corresponding Author
[L2CrCl2(μ-Cl)]2 (2). The complex 2 was prepared as blue
powder via a similar procedure, in yield of 93.0%, illustrated
below for 1. Anal. Calcd for C64H56Cl6Cr2P4 (%): C, 60.73; H,
4.46. Found: C, 60.61; H, 4.53.
Notes
The authors declare no competing financial interest.
[L3CrCl2(μ-Cl)]2 (3). To a solution of Ph2PC(Ph)CHPPh2
L3 (0.141 g, 0.30 mmol) in dry toluene (10 mL) was added
[CrCl3(THF)3] (0.105 g, 0.28 mmol). The resulting mixture
was stirred at 80 °C for 8 h, and a blue precipitate formed. The
product was collected by filtration, washed with 10 mL of n-
hexene, and dried in vacuo, yielding 3 (0.168 g, 95.3%) as blue
powder. Anal. Calcd for C64H52Cl6Cr2P4 (%): C, 60.92; H,
4.15. Found: C, 60.39; H, 4.67.
ACKNOWLEDGMENTS
■
Financial support from Shanghai Pujiang Talent Program
(11PJ1402500), the Fundamental Research Funds for the
Central Universities (WK1114014), and the National Natural
Science Foundation of China (21171056) is greatly acknowl-
edged.
[L4CrCl2(μ-Cl)]2 (4). The complex 4 was prepared as blue
powder via a similar procedure, in yield of 96.1%, illustrated
below for 3. Anal. Calcd for C64H64Cl6Cr2P4 (%): C, 60.35; H,
5.06. Found: C, 60.76; H, 5.39.
REFERENCES
■
(1) (a) McGuinness, D. S. Chem. Rev. 2011, 111, 2321. (b) Dixon, J.
T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. Chem.
2004, 689, 3641. (c) Wass, D. F. Dalton Trans. 2007, 816. (d) Agapie,
T. Coord. Chem. Rev. 2011, 255, 861.
[L5CrCl2(μ-Cl)]2 (5). The complex 5 was prepared as blue
powders via a similar procedure, in yield of 91.2%, illustrated
below for 3. Anal. Calcd for C60H60Cl6Cr2P4 (%): C, 58.99; H,
4.95. Found: C, 59.27; H, 5.21.
(2) Manyik, R. M.; Walker, W. E.; Wilson, T. P. J. Catal. 1977, 47,
197.
(3) (a) Reagan, W. K. Phillips Petroleum Company, EP, 0 417 477,
1991. (b) Freeman, J. W.; Buster, J. L.; Knudsen, R. D. Phillips
Petroleum Company, US Pat., 5856257, 1999. (c) Carter, A.; Cohen,
S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. Chem. Commun.
2002, 858. (d) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu,
C.; Englert, U.; Dixon, J. T.; Grove, C. Chem. Commun. 2003, 334.
(e) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Morgan, D.;
Dixon, J. T.; Bollmann, A.; Maumela, H.; Hess, F.; Englert, U. J. Am.
Chem. Soc. 2003, 125, 5272. (f) Yu, Z.; Houk, K. N. Angew. Chem., Int.
Ed. 2003, 42, 808. (g) Agapie, T.; Schofer, S. L.; Labinger, J. A.;
Bercaw, J. E. J. Am. Chem. Soc. 2004, 126, 1304. (h) Rensburg, W. J.;
Grove, C.; Steynberg, J. P.; Stark, K. B.; Huyser, J. J.; Steynberg, P. J.
Organometallics 2004, 23, 1207. (i) McGuinness, D. S.; Wasserscheid,
P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552.
Synthesis of Complex 11. L5Cr(CO)4 (11). To a solution of
L5 (0.100 g, 0.220 mmol) in dry toluene (5 mL) was added
[Cr(CO)6] (0.064 g, 0.29 mmol), and the resulting mixture was
stirred under reflux for 48 h. The solvent was evaporated, and
the residue was extracted into DCM (1 mL). Six mL of
methanol was added to complete precipitation. The product
was collected by filtration, washed with 10 mL of methanol, and
dried in vacuo, yielding 11 (0.071 g, 52.0%) as white powder.
1H NMR (400 MHz, CDCl3): δ = 7.90 (dd, J = 56.4, 4.4, 1H),
7.65 (t, J = 8.2 Hz, 4H), 7.53 (t, J = 8.2 Hz, 4H), 7.42−7.39 (m,
12H), 1.11 (s, 9H). 13C NMR (100 MHz, CDCl3): δ = 147.36,
146.99, 146.91, 146.53, 137.87, 137.85, 137.51, 137.49, 135.53,
135.50, 135.21, 135.17, 131.57, 131.47, 131.26, 131.15, 129.66,
129.56, 128.72, 128.62, 128.31, 128.21, 40.94, 40.81, 32.95. 31P
NMR (CDCl3): δ = 98.90, 73.18. Anal. Calcd for
C34H30CrO4P2 (%): C, 66.23; H, 4.90. Found: C, 66.36; H,
4.71.
(j) Bluhm, M. E.; Walter, O.; Doring, M. J. Organomet. Chem. 2005,
̈
690, 713. (k) Nenu, C. N.; Weckhuysen, B. M. Chem. Commun. 2005,
1865. (l) Elowe, P. R.; McCann, C.; Pringle, P. G.; Spitzmesser, S. K.;
Bercaw, J. E. Organometallics 2006, 25, 5255. (m) Jabri, A.; Temple,
C.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R. J. Am.
Chem. Soc. 2006, 128, 9238. (n) Agapie, T.; Labinger, J. A.; Bercaw, J.
E. J. Am. Chem. Soc. 2007, 129, 14281. (o) McGuinness, D. S.; Suttil, J.
A.; Gardiner, M. G.; Davies, N. W. Organometallics 2008, 27, 4238.
(p) Jabri, A.; Mason, C. B.; Sim, Y.; Gambarotta, S.; Burchell, T. J.;
Duchateau, R. Angew. Chem., Int. Ed. 2008, 47, 9717. (q) Vidyaratne,
I.; Nikiforov, G. B.; Gorelsky, S. I.; Gambarotta, S.; Duchateau, R.
Angew. Chem., Int. Ed. 2009, 48, 6552.
(4) (a) Zhang, J.; Braunstein, P.; Hor, T. S. A. Organometallics 2008,
27, 4277. (b) Zhang, J.; Li, A.; Hor, T. S. A. Organometallics 2009, 28,
2935. (c) Zhang, J.; Li, A.; Hor, T. S. A. Dalton Trans. 2009, 9327.
(5) Klemps, C.; Payet, E.; Magna, L.; Saussine, L.; Le Goff, X. F.; Le
Floch, P. Chem.−Eur. J. 2009, 15, 8259.
(6) Sydora, O. L.; Jones, T. C.; Small, B. L.; Nett, A. J.; Fischer, A. A.;
Carney, M. J. ACS Catal. 2012, 2, 2452.
(7) Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.;
Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto,
S.; Overett, M. J.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J.
Am. Chem. Soc. 2004, 126, 14712.
(8) (a) Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F.; Killian, E.;
Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M. J.
Chem. Commun. 2005, 622. (b) Blann, K.; Bollmann, A.; Dixon, J. T.;
Hess, F. M.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.;
Otto, S.; Overett, M. J. Chem. Commun. 2005, 620. (c) Blann, K.;
Bollmann, A.; de Bod, H.; Dixon, J. T.; Killian, E.; Nongodlwana, P.;
Maumela, M. C.; Maumela, H.; McConnell, A. E.; Morgan, D. H.;
Overett, M. J.; Pretorius, M.; Kuhlmann, S.; Wasserscheid, P. J. Catal.
2007, 249, 244. (d) Kuhlmann, S.; Blann, K.; Bollmann, A.; Dixon, J.
Oligomerization of Ethylene. A 120 mL stainless steel
reactor was dried at 120 °C for 3 h under vacuum and then
cooled down to the desired reaction temperature. The
precatalysts and cocatalysts (MMAO-3A) were combined in a
Schlenk vessel in the ratios indicated in Tables 1−3. The
resultant mixture was stirred for 1 min and immediately
transferred to the reactor. Then, the reactor was immediately
pressurized. After the specified reaction time, the reaction was
stopped by closing the ethylene feed, cooling the system to 0
°C, depressurizing, and quenching by addition of 30 mL of 10%
aq. HCl. A small sample of the upper-layer solution was filtered
through a layer of Celite and analyzed by GC using nonane as
the internal standard. The individual oligomerization products
were identified by GC-MS. The remainder of the upper-layer
solution was filtered to isolate the solid polymeric products.
The solid products were suspended in 10% aq. HCl and stirred
for 24 h, dried under reduced pressure, and weighed.
ASSOCIATED CONTENT
■
S
* Supporting Information
Representative NMR spectra and crystallographic data (CIF)
for 11. This material is available free of charge via the Internet
2316
dx.doi.org/10.1021/cs400651h | ACS Catal. 2013, 3, 2311−2317