10.1002/anie.202003392
Angewandte Chemie International Edition
COMMUNICATION
electrophiles (2a, 2q, 2n and 2r) gave the corresponding alcohols
11ha, 11hq, 11hn and 11hr in 75-97% yield.
instantly with various electrophiles affording functionalized
(hetero)arenes in high yields. This flow procedure was
successfully extended to the lateral metalation of methyl-
substituted arenes and heteroaromatics resulting in benzylic
potassium organometallics, which were trapped with a range of
electrophiles. A scale-up was possible without further optimization.
Further investigations of flow metalations using KDA/TMEDA are
currently under way in our laboratories.
Table 4. Lateral metalation of methyl-substituted (hetero)arenes using
KDA/TMEDA in continuous flow leading to organopotassium species of type 10.
Subsequent batch trapping with various electrophiles afforded functionalized
methyl-substituted (hetero)arenes of type 11.
Acknowledgements
N. Weidmann thanks the German Academic Scholarship
Foundation for a fellowship. We thank the DFG and LMU for
financial support. We further thank BASF (Ludwigshafen) and
Albemarle (Frankfurt) for the generous gift of chemicals and
Uniqsis for technical support.
Keywords: flow chemistry • lateral metalation • potassium•
arene • heteroarene
[1]
a) J. Clayden, Organolithiums: Selectivity for Synthesis (Eds.: J. E.
Baldwin, R. M. Williams), Pergamon, Oxford, 2002; b) T. Rathman, J. A.
Schwindeman, Org. Process Res. Dev. 2014, 18, 1192; c) G. Wu, M.
Huang, Chem. Rev. 2006, 106, 2596. d) V. Snieckus, Chem. Rev. 1990,
90, 879; e) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew.
Chem. Int. Ed. 2004, 43, 2206; Angew. Chem. 2004, 116, 2256.
a) D. Seyferth, Organometallics 2006, 25, 2; b) D. Seyferth,
Organometallics 2009, 28, 2; c) G. B. Buckton, Proc. R. Soc. London
1859, 9, 685; d) G. B. Buckton, Liebigs Ann. Chem. 1859, 112, 220; e)
W. H. Carothers, D. D. Coffman, J. Am. Chem. Soc. 1930, 52, 1254; f) J.
A. Wanklyn, Liebigs Ann. Chem. 1858, 108, 67.
[2]
[3]
a) Y. Ma, R. A. Woltornist, R. F. Algera, D. B. Collum, J. Org. Chem.
2019, 84, 9051; b) R. F. Algera, Y. Ma, D. B. Collum, J. Am. Chem. Soc.
2017, 139, 11544; c) R. E. Mulvey, S. D. Robertson, Angew. Chem. Int.
Ed. 2013, 52, 11470; Angew. Chem. 2013, 125, 11682; d) M. Schlosser,
Organometallics in Synthesis John Wiley & Sons, Hoboken, 2013; e) M.
Schlosser J. Hartmann, M. Stähle, J. Kramer, A. Walde, A. Mordini,
Chimia 1986, 40, 306.
[4]
a) H. Kim, A. Nagaki, J.-i. Yoshida, Nat. Commun. 2011, 2, 264; b) C.
Battilocchio, F. Feist, A. Hafner, M. Simon, D. N. Tran, D. M. Allwood, D.
C. Blakemore, S. V. Ley, Nat. Chem. 2016, 8, 360; c) S. Roesner, S. L.
Buchwald, Angew. Chem. Int. Ed. 2016, 55, 10463; Angew. Chem. 2016,
128, 10619; d) M. Teci, M. Tilley, M. A. McGuire, M. G. Organ, Org.
Process Res. Dev. 2016, 20, 1967; e) B. Gutmann, C. O. Kappe, J. Flow
Chem. 2017, 7, 65; f) J. Britton, T. F. Jamison, Nat. Protoc. 2017, 12,
2423; g) G. A. Price, A. R. Bogdan, A. L. Aguirre, T. Iwai, S. W. Djuric,
M. G. Organ, Catal. Sci. Technol. 2016, 6, 4733; For recent reviews
about flow chemistry see: h) M. B. Plutschack, B. Pieber, K. Gilmore, P.
H. Seeberger, Chem. Rev. 2017, 117, 11796; i) M. Colella, A. Nagaki, R.
Luisi, Chem. Eur. J. 2020, 26, 19.
Yields of analytically pure isolated products [a] substrate (neat), E-X (0.30 mmol,
1.00 equiv), KDA/TMEDA (1.10 equiv), 25 °C, 24 s, 10 mL/min. [b] Wurtz-type
[c]
coupling from the corresponding iodide.
from the corresponding Weinreb
amide. [d] Scale-up to 2.0 mmol using the optimized flow conditions. [e] 25 °C, 24
s, 10 mL/min [f] -40 °C, 24 s, 10 mL/min. [g] 40 °C, 0.18 s, 10 mL/min. [h] 10 mol%
CuCN·2LiCl. [i] -78 °C, 0.18, 10 mL/min.
Trapping 10h with alkyl iodide 2m and cinnamyl bromide 2p
(in the presence of 10% CuCN·2LiCl) led to the corresponding
products 11hm and 11hs in 66-77% yield. Pyrazine 9i was
metalated in continuous flow with KDA/TMEDA. We have found
that after metalation at the methyl-substituent the heterobenzylic
potassium organometallic 10i was obtained. Batch trapping with
dibutyl disulfide (2f) and dodecyl iodide (2m) gave the
functionalized pyrazines 11if and 11im in 79-95% isolated yield.
[5]
[6]
a) N. Weidmann, M. Ketels, P. Knochel, Angew. Chem. Int. Ed. 2018, 57,
10748; Angew. Chem. 2018, 130, 10908.
a) A crystal structure of KDA complexed with 1.0 equiv of TMEDA was
reported: W. Clegg, S. Kleditzsch, R. E. Mulvey, P. O´Shaughnessy, J.
Organomet. Chem. 1998, 558, 193; b) L. Lochmann, J. Trekoval, J.
Organomet. Chem. 1979, 179, 123; c) L. Lochmann, J. Pospišil, D. Lim,
Tetrahedron Lett. 1966, 2, 257; d) A. Mordini, D. Peruzzi, F. Russo, M.
Valacchi, G. Reginato, A. Brandi, Tetrahedron 2005, 61, 3349; e) L.
Lochmann, M. Janata, Cent. Eur. J. Chem. 2014, 12, 537; f) for
preparation of KTMP using Me3SiCH2K see: B. Conway, A. R. Kennedy,
R. E. Mulvey, S. D. Robertson, J. G. Alvarez, Angew. Chem. Int. Ed.
2010, 49, 318; Angew. Chem. 2010, 122, 3250.
In summary, we have reported a preparation of the potassium
base KDA/TMEDA in the absence of any lithium salts and have
demonstrated its utility for the metalation of (hetero)arenes
containing sensitive functional groups using a flow set-up. The
resulting potassium organometallics react upon batch quench
[7]
Y. Ma, R. F. Algera, D. B. Collum, J. Org. Chem. 2016, 81, 11312.
4
This article is protected by copyright. All rights reserved.