Tunable pK for Lamgmuir Enzyme
A R T I C L E S
Chart 1. Structures of Amino Acid-Carrying Amphiphiles and
control, because pK perturbations have been reported at the
surfaces of micelles,4 lipid bilayer vesicles,5 self-assembled
monolayers,6 and Langmuir monolayers.7 However, the pK
behaviors at different interfaces have thus far been discussed
separately, and there has been no systematic interpretation.
One of us reported significant differences in molecular
interaction at molecular, microscopic, and macroscopic inter-
faces, in which the most efficient modification of the molecular
interaction was achieved at a macroscopic interface, such as
the air-water interface.8 On the basis of that knowledge, we
have recently investigated the pK behaviors of amino acid
residues (usually the ꢀ-amino group in the Lys residue, both at
the air-water interface and at a vesicle surface9) and have found
that the air-water interface provides an appropriate microen-
vironment for fine-tuning of pK and for an enzyme-like reaction.
Here, we report three important findings: (i) superior pK control
at the air-water interface when compared with a vesicle system;
(ii) pK tuning by 4 or 5 units by control of ionic strength in the
subphase and prediction of the interfacial dielectric nature by a
simple equation; (iii) demonstration of ester hydrolysis by the
pK-controlled Lys residue at the air-water interface. These
findings should lead to development of a novel concept for
artificial enzymes that is proposed to be referred to as the
Langmuir-enzyme (L-zyme).
Related Compounds
Experimental Section
1. Materials. Structures of the amino acid-carrying amphiphiles and
related molecules used in this research are shown in Chart 1. Syntheses
of N+C5Lys2C16,10 N+C5Asp2C16,11 and N+C5Ala2C16 have been
12
described previously. Compounds N+C1Lys2C16, N+C5Glu2C16, Suc2C16,
and AcHis2C16 were newly synthesized by coupling of a dialkylamine
(4) (a) Tokiwa, F.; Ohki, K. J. Phys. Chem. 1967, 71, 1824-1829. (b)
Yalkowsky, S. H.; Zografi, G. J. Colloid Interface. Sci. 1970, 34, 525-
533. (c) Whiddon, C. R.; Bunton, C. A.; So¨derman, O. J. Phys. Chem. B
2003, 107, 1001-1005. (d) Kanicky, J. R.; Shah, D. O. Langmuir 2003,
19, 2034-2038. (e) Roy, D.; Karmakar, R.; Mondal, S. K.; Sahu, K.;
Bhattacharyya, K. Chem. Phys. Lett. 2004, 399, 147-151.
(5) (a) Mille, M.; Vanderkooi, G. J. Colloid Interface Sci. 1977, 61, 475-
484. (b) Haines, T. H. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 160-164.
(c) Swairjo, M. A.; Seaton, B. A.; Roberts, M. F. Biochim. Biophys. Acta
1994, 1191, 354-361. (d) Rostovtseva, T. K.; Aguilella, V. M.; Vodyanoy,
I.; Bezrukov, S. M.; Parsegian, V. A. Biophys. J. 1998, 75, 1783-1792.
(e) Silvander, M.; Hansson, P.; Edwards, K. Langmuir 2000, 16, 3696-
3702. (f) Apel, C. L.; Deamer, D. W.; Mautner, M. N. Biochim. Biophys.
Acta 2002, 1559, 1-9. (g) Lee. S.; De´saubry, L.; Nakatani, Y.; Ourisson,
G. C. R. Chimie 2002, 5, 331-335.
(6) (a) Creager, S. E.; Clarke, J. Langmuir 1994, 10, 3675-3683. (b) Troughton,
E. B.; Bain, C. D.; Whiteside, G. M.; Nuzzo, R. G.; Allara, D. L.; Porter,
M. D. Langmuir 1988, 4, 365-385. (c) Bain, C. D.; Whitesides, G. M.
Langmuir 1989, 5, 1370-1378. (d) God´ınez, L. A.; Castro, R.; Kaifer, A.
E. Langmuir 1996, 12, 5087-5092. (e) Hu, K.; Bard, A. J. Langmuir 1997,
13, 5114-5119. (f) Sugihara, K.; Shimazu, K.; Uosaki, K. Langmuir 2000,
16, 7101-7105. (g) Kakiuchi, T.; Iida, M.; Imabayashi, S.; Niki, K.
Langmuir 2000, 16, 5397-5401. (h) Munakata, H.; Kuwabata, S. Chem.
Commun. 2001, 1338-1339. (i) Schweiss, R.; Welzel, P.; Knoll, W.;
Werner, C. Chem. Commun. 2005, 256-258.
to the C-terminal and a polar headgroup to the N-terminal of the
corresponding amino acid residue. The detailed descriptions of the
synthesis are summarized in Supporting Information. Hexadecanoic acid
4-nitrophenyl ester (PNPC16) was purchased from Sigma. Water used
for the subphase was distilled using an Autostill WG220 (Yamato) and
deionized by a Milli-Q Lab (Millipore). Spectroscopic grade benzene
and ethanol (Wako Pure Chem.) were used as the spreading solvents.
High-purity sulfuric acid, sodium hydroxide, and sodium sulfate were
used as received.
2. π-A Isotherm Measurement. π-A isotherms were measured
using an FSD-300 computer-controlled film balance system (USI
System). A solution (benzene/ethanol (70/30 v/v)) of the amphiphile
(ca. 1 mM, and ca. 100 µL) was spread on the subphase at 20.0 ( 0.2
°C and compressed at a rate of 0.2 mm s-1 (or 20 mm2 s-1 based on
area). The subphase pH was adjusted by addition of the minimum
amount of aqueous sulfuric acid or sodium hydroxide with fluctuation
of subphase pH during a single measurement being less than 0.2 pH
units because of the shielded atmosphere. The ionic strength of the
subphase was adjusted with sodium sulfate.
(7) (a) Bagg, J.; Haber, M. D.; Gregor, H. P. J. Colloid Interface Sci. 1966,
22, 138-143. (b) Oishi, Y.; Takashima, Y.; Suehiro, K.; Kajiyama, T.
Langmuir 1997, 13, 2527-2532. (c) Esker, A. R.; Zhang, L.-H.; Olsen, C.
E.; No, K.; Yu H. Langmuir, 1999, 15, 1716-1724. (d) Kanicky, J. R.;
Poniatowski, A. F.; Mehta, N. R.; Shah, D. O. Langmuir 2000, 16, 172-
177. (e) Maierhofer, A. P.; Brettreich, M.; Burghardt, S.; Vostrowsky, O.;
Hirsch, A.; Langridge, S.; Bayerl, T. M. Langmuir 2000, 16, 8884-8891.
(f) Dynarowicz-Latka, P.; Cavalli, A.; Oliveira, O. N., Jr. Thin Solid Films
2000, 360, 261-267.
(8) Onda, M.; Yoshihara, K.; Koyano, H.; Ariga, K.; Kunitake, T. J. Am. Chem.
Soc. 1996, 118, 8524-8530.
(9) Preliminary results were reported in Ariga, K.; Abe, T.; Kikuchi, J. Chem.
Lett. 2000, 82-83.
3. Evaluation of pK Values. Dissociation constants (pK) at the air-
water interface were evaluated from the pH dependence of the apparent
molecular areas. The apparent total molecular area (Aobsd) is given,
assuming the absence of condensation effects, with the molecular areas
AB and ABH of the unprotonated and protonated species respectively,
and the B content of x, where B is NH2, COO-, or imidazole free base.
(10) Kikuchi, J.; Takashima, T.; Nakano, H.; Hie, K.; Etoh, H.; Noguchi, Y.;
Suehiro, K.; Murakami, Y. Chem. Lett. 1993, 553-556.
(11) Murakami, Y.; Hisaeda, Y.; Ogawa, A.; Miyajima, T.; Hayashida, O.; Ohno,
T. Tetrahedron Lett. 1993, 34, 863-866.
(12) Murakami, Y.; Nakano A.; Yoshimatsu, A.; Uchitomi, K.; Matsuda, Y. J.
Am. Chem. Soc. 1984, 106, 3613-3623.
9
J. AM. CHEM. SOC. VOL. 127, NO. 34, 2005 12075