K. Sato et al. / Tetrahedron Letters 45 (2004) 8199–8201
8201
12.8Hz, –CH2Ph), 4.78, 4.60 (1H · 2, each d, JA,B
=
disaccharides having a variety of functional groups at
C-20.4 Allyloxycarbonyl derivative 9 was then trans-
formed with (Ph3P)4Pd7 into the corresponding allyl
ether derivative 10 in 72% yield. The structure of 10
12.8Hz, –CH2Ph), 4.78, 4.45 (1H · 2, each d,
JA,B = 12.8Hz, –CH2Ph), 4.64 (1H, d, H-10, J1 ,2
0
0
=
7.3Hz), 4.66, 4.45 (2H · 2, each m, –CH2–CH@CH2 · 2),
4.60 (1H, dd, H-30, J2 ,3 = 11.0Hz, J3 ,4 = 2.3Hz), 4.36
(1H, dd, H-3, J2,3 = 10.4Hz, J3,4 = 8.6Hz), 4.25 (1H, dd,
0
0
0
0
1
was supported by H NMR10 (high field shift of H-30,
H-60a, and H-60b). Compound 10 may be useful for syn-
thesizing antennary mannopyranosyl oligosaccharides,
because it is possible to remove each protecting group
individually.
H-60a, J5 ,6 a = 5.2Hz, J6 a,6 b = 11.3Hz), 4.22 (1H, dd,
0
0
0
0
H-60b, J5 ,6 b = 7.9Hz), 4.20 (1H, dd, H-2), 4.14 (1H, dd,
0
0
H-4, J4,5 = 9.8Hz), 4.06 (1H, dd, H-40, J4 ,5 = 0Hz,
0
0
0
J4 ,OH
=
4.9Hz), 4.03 (1H, dd, H-6a, J5,6a = 3.1Hz,
J6a,6b = 11.6Hz), 3.93 (1H, ddd, H-20, J2 ,OH = 3.7Hz),
3.80 (1H, dd, H-6b, J5,6b = 1.8Hz), 3.72 (1H, d, H-20OH),
3.67 (1H, ddd, H-5), 3.55 (1H, ddd, H-50), 2.49 (1H, d,
40-OH).
0
In summary, the combination of indirect allylation and
a double SN2 substitution of the 20,40-bis(triflate) deriva-
tive of b-D-galactopyranosyl disaccharide using CsOAc
was shown to work well for the synthesis of b-D-manno-
pyranosyl disaccharides, which form the core of anten-
nary b-D-mannopyranosyl oligosaccharides. The ease
of reaction and the dramatically improved yields, should
make this a very useful method for performing this and
similar kinds of oligosaccharide syntheses.
Compound 8:d 7.78–6.83 (5H · 3 and 4H, m, Ph · 3 and
Phth), 5.98, 5.93 (1H · 2, each m, –CH2–CH@CH2 · 2),
5.42, 5.33 (1H · 2, each m, –CH2–CH@CH2), 5.41, 5.33
(1H · 2, each m, –CH2–CH@CH2), 5.19 (1H, d, H-
40,J4 ,3 = 3.1Hz), 5.13 (1H, d, H-1, J1,2 = 8.2Hz), 4.90,
4.34 (1H · 2, each d, JA,B = 11.9Hz, –CH2Ph), 4.81, 4.48
(1H · 2, each d, JA,B = 12.5Hz, –CH2Ph), 4.73–4.67
(2H · 2, each m, –CH2–CH@CH2 · 2), 4.65 (1H, dd, H-
20), 4.64, 4.32 (1H · 2, each d, JA,B = 11.9Hz, –CH2Ph),
0
0
4.58 (1H, dd, H-30, J3 ,2 = 10.4Hz, J3 ,4 = 3.1Hz), 4.49
0
0
0
0
Acknowledgements
(1H, d, H-10, J1 ,2 = 7.6Hz), 4.23 (1H, dd, H-3,
J2,3 = 6.7Hz), 4.22 (1H, dd, H-2), 4.20 (1H, dd, H-60a),
4.17 (1H, dd, H-4, J4,3 = 9.8Hz), 3.92 (1H, dd, H-6a,
J6a,6b = 11.3Hz, J6a,5 = 2.8Hz), 3.82 (1H, dd, H-60b,
0
0
This work was partially supported by a ÔHigh-Tech Re-
search Center ProjectÕ and a Grant-in-Aid (15750148)
for Scientific Research from the Ministry of Education,
Science, Sports and Culture, Japan. The authors thank
Professor T. Nakagawa for helpful discussions.
0
0
0
0
J6 b,6 a = 11.3Hz, J6 b,5 = 8.2Hz), 3.79 (1H, dd, H-6b,
J6b,5 = 1.2Hz), 3.59 (1H, dd, H-5, J5,4 = 9.8Hz), 3.46 (1H,
dd, H-50, J5 ,6 a = 6.4Hz).
0
0
Compound 9: d 7.65 (4H, m, Phth), 7.43–6.76 (5H · 3, m,
Ph · 3), 5.92, 5.87 (1H · 2, each m, –CH2–CH@CH2 · 2),
5.48 (1H, dd, H-20, J1 ,2 = 0.9Hz, J2 ,3 = 3.4Hz), 5.35,
5.28 (1H · 2, each m, –CH2–CH@CH2), 5.31, 5.22
(1H · 2, each m, –CH2–CH@CH2), 5.17 (1H, dd, H-40,
References and notes
0
0
0
0
1. For example: (a) Nagai, H.; Matsumura, S.; Toshima, K.
Carbohydr. Res. 2003, 338, 1531–1534; (b) Tsuda, T.; Sato,
S.; Nakamura, S.; Hashimoto, S. Heterocycles 2003, 59,
509–515; (c) Aloui, M.; Chambers, D. J.; Cumpstey, I.;
Fairbanks, A. J.; Seward, C. M. P. Chem. Eur. J. 2002, 8,
2608–2621; (d) Kim, K. S.; Jin, H.; Lee, Y. J.; Lee, Y. J.;
Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481; (e)
Plante, O. J.; Palacci, E. R.; Seeberger, P. H. Org. Lett.
2000, 2, 3841–3843; (f) Gridly, J. J.; Osborn, H. M. I. J.
Chem. Soc., Perkin Trans. 1 2000, 1471–1491.
2. David, S.; Malleron, A.; Dini, C. Carbohydr. Res. 1989,
188, 193–200.
3. Alais, J.; David, S. Carbohydr. Res. 1990, 201, 69–77.
4. Sato, K.; Yoshitomo, A.; Takai, Y. Bull. Chem. Soc. Jpn.
1997, 70, 885–890.
5. Sato, K.; Seki, H.; Yoshitomo, A.; Nanaumi, H.; Takai,
Y.; Ishido, Y. J. Carbohydr. Chem. 1998, 17, 703–727.
6. (a) Ogawa, T.; Matsui, M. Carbohydr. Res. 1977, 56, C1–
C6; (b) Ogawa, T.; Nukada, T.; Matsui, M. Carbohydr.
Res. 1982, 101, 263–270.
0
0
0
0
J
3 ,4 J4 ,5 = 10.1Hz), 5.05 (1H, d, H-1, J1,2@8.2Hz), 4.81,
4.37 (1H · 2, each d, JA,B = 12.5Hz, –CH2Ph), 4.79, 4.54
(1H · 2, each d, JA,B = 12.3Hz, –CH2Ph), 4.77, 4.46
(1H · 2, each d, JA,B = 12.2Hz, –CH2Ph), 4.77 (1H, d,
H-10, J1 ,2 = 0.6Hz), 4.69 (1H, dd, H-30), 4.63, 4.56
(2H · 2, each m, –CH2–CH@CH2 · 2), 4.22 (1H, dd,
0
0
H-60a, J5 ,6 a = 5.2Hz, J6 a,6 b = 11.9Hz), 4.21 (1H, dd, H-
3, J2,3 = 10.7Hz, J3,4 = 8.2Hz), 4.17 (1H, dd, H-2,
J2,1 = 8.2Hz), 4.12 (1H, dd, H-4, J4,5 = 9.8Hz), 4.06 (1H,
0
0
0
0
dd, H-60b, J5 ,6 b = 3.3Hz), 3.80 (1H, dd, H-6a,
J5,6a = 3.0Hz, J6a,6b = 11.6Hz), 3.76 (1H, dd, H-6b,
J5,6b = 1.8Hz), 3.51 (1H, ddd, H-5), 3.39 (1H, ddd, H-
50), 2.14, 2.04 (3H · 2, each s, OAc · 2).
0
0
Compound 10: d 7.68 (4H, m, Phth), 7.65–6.86 (5H · 3, m,
Ph · 3), 5.79, 5.76 (1H · 2, each m, –CH2–CH@CH2 · 2),
5.34 (1H, dd, H-20, J1 ,2 = 0Hz, J2 ,3 = 3.4Hz), 5.23, 5.17
(1H · 2, each m, –CH2–CH@CH2), 5.20, 5.15 (1H · 2,
each m, –CH2–CH@CH2), 5.10 (1H, d, H-1, J1,2 = 8.3Hz),
0
0
0
0
4.92 (1H, dd, H-40, J3 ,4 J4 ,5 = 9.8Hz), 4.84, 4.40 (1H · 2,
each d, JA,B = 11.9Hz, –CH2Ph), 4.80, 4.52 (1H · 2, each
d, JA,B = 12.2Hz, –CH2Ph), 4.79, 4.48 (1H · 2, each d,
JA,B = 12.5Hz, –CH2Ph), 4.65 (1H, s, H-10), 4.24 (1H, dd,
H-3, J2,3 = 10.7Hz, J3,4 = 8.0Hz), 4.20 (1H, dd, H-2), 4.09
(1H, dd, H-4, J4,5 = 10.1Hz), 4.06, 4.02 (1H · 2, each m,
–CH2–CH@CH2), 4.03, 4.01 (1H · 2, each m, –CH2–
CH@CH2), 3.82 (1H, dd, H-6a, J5,6a = 3.4Hz,
J6a,6b = 11.0Hz), 3.77 (1H, dd, H-6b, J5,6b = 2.1Hz), 3.57
0
0
0
0
7. Guibe, F.; Saint MÕLeux, Y. Tetrahedron Lett. 1981, 22,
3591–3594.
8. Ogawa, T.; Nakabayashi, S. Carbohydr. Res. 1981, 97, 81–
86.
9. Paulsen, H.; Paal, M. Carbohydr. Res. 1984, 135, 53–
69.
10. 1H NMR (500MHz, in CDCl3) data of compound 7–10.
Compound 7:d 7.63 (4H, m, Phth), 7.52–6.70 (5H · 3,
m, Ph · 3), 5.93, 5.86 (1H · 2, each m, –CH2–CH@
CH2 · 2), 5.37, 5.27 (1H · 2, each m, –CH2–CH@CH2),
5.29, 5.23 (1H · 2, each m, –CH2–CH@CH2), 5.13 (1H,
(1H, ddd, H-5), 3.50 (1H, dd, H-60a, J5 ,6 a = 1.9Hz),
0
0
3.35 (1H, dd, H-60b,J6 b,6 a = 12.6Hz, J6 b,5 = 6.8Hz),
3.28 (1H, dd, H-30), 3.23 (1H, ddd, H-50), 2.12, 2.06
(3H · 2, each s, OAc · 2).
0
0
0
0
d, H-1, J1,2 = 8.5Hz), 4.79, 4.40 (1H · 2, each d, JA,B
=