4004
S. Sayama / Tetrahedron Letters 47 (2006) 4001–4005
Table 4. Conversion of aromatic 1,2-diols 6, 7 to 1,3-dioxanes 4a–g
and benzophenone 8 with PTAB–SbBr3 in DMSOa
2. (a) Yamamoto, J.; Ito, S.; Tsuboi, T.; Tsuboi, T.;
Tsukihara, K. Bull. Chem. Soc. Jpn. 1985, 58, 470; (b)
Wang, W.-B.; Shi, L.-L.; Huang, Y.-Z. Tetrahedron 1990,
46, 3315; (c) Mukaiyama, T.; Suzuki, K.; Han, J. S.;
Kobayashi, S. Chem. Lett. 1992, 435; (d) Harada, T.;
Mukaiyama, T. Chem. Lett. 1992, 81; (e) Cho, C. S.;
Motofusa, S.; Ohe, K.; Uemura, S. J. Org. Chem. 1995, 60,
883; (f) Hayashi, A.; Yamaguchi, M.; Hirama, M. Synlett
1995, 195; (g) Gloria, P. M. C.; Prabhakar, S.; Lobo, A.
M.; Gomes, M. J. S. Tetrahedron Lett. 2003, 44, 8819; (h)
Peyronneau, M.; Boisdon, M.-T.; Roques, N.; Mazieres,
S.; Roux, C. L. Eur. J. Org. Chem. 2004, 4636.
3. (a) Sayama, S.; Inamura, Y. Bull. Chem. Soc. Jpn. 1991,
64, 306; (b) Sayama, S.; Inamura, Y. Chem. Lett. 1996,
633; (c) Sayama, S. Synth. Commun. 2005, 35, 2115.
4. Ho, T.-L. In Fiesers’ Reagents for Organic Synthesis; John
Wiley and Sons: New York, 1967; Vols. 1–22.
5. (a) Mondal, E.; Sahu, P. R.; Bose, G.; Khan, A. T.
Tetrahedron Lett. 2002, 43, 2843; (b) Mondal, E.; Bose,
G.; Khan, A. T. Synlett 2001, 785.
6. (a) Gopinath, R.; Patel, B. K. Org. Lett. 2000, 2, 4177; (b)
Bora, U.; Bose, G.; Chaudhuri, M. K.; Dhar, S. S.;
Gopinath, R.; Khan, A. T.; Patel, B. K. Org. Lett. 2000, 2,
247.
R1
OH
R2
R3
O
Ph
Ph
PTAB / SbBr3
1,3-diol
Ph
R
Ph
Ph
O
OH
O
H
R4
4a-4g
8
(S)
6: R=H
7: R=Ph
Run
S
1,3-Diol
(a–g)
Time (h)
Products, yield
(%)
Molar
4a–g
8
ratio/S
1
2
3
4
5
6
7
8
6
6
6
6
6
6
6
7
7
7
7
7
7
7
a
7.0
7.0
7.0
6.0
2.5
3.0
3.0
7.0
6.0
3.0
3.0
2.0
2.0
2.0
70
19
70
40
37
61
42
70
41
42
42
41
42
42
4a
96
96
86
95
87
94
80
83
84
86
85
84
84
85
b
c
d
e
f
4b
4c
4d
4e
4f
g
a
b
c
d
e
f
4g
4a
4b
4c
4d
4e
4f
87
88
89
89
86
86
89
9
10
11
12
13
14
7. (a) Sayama, S.; Onami, T. Synlett 2004, 2369; (b) Sayama,
S.; Onami, T. Synlett 2004, 2739; (c) Sayama, S. Hetero-
cycles 2005, 65, 1347.
8. (a) Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F.; Amani,
K. Tetrahedron Lett. 2003, 44, 3951; (b) Almog, J.;
Zehavy, Y.; Cohen, S. Tetrahedron Lett. 2003, 44, 3285;
(c) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2003, 44,
3337; (d) Rana, K. K.; Guin, C.; Jana, S.; Roy, S. C.
Tetrahedron Lett. 2003, 44, 8597; (e) Curini, M.; Epifano,
F.; Marcotullio, M. C.; Rosati, O. Synlett 2001, 1182; (f)
Karimi, B.; Seradj, H. Synlett 2000, 805; (g) Palaniappan,
S.; Narender, P.; Saravanan, C.; Rao, V. J. Synlett 2003,
1793; (h) Cruz, T. E. L.; Rychnovsky, S. D. Synlett 2004,
2013; (i) Shimizu, K.; Hayashi, E.; Hatamachi, T.;
Kodama, T.; Kitayama, Y. Tetrahedron Lett. 2004, 45,
5135; (j) De, S. K. Tetrahedron Lett. 2004, 45, 2339; (k)
Wu, H.; Yang, F.; Cui, P.; Tang, J.; He, M. Tetrahedron
Lett. 2004, 45, 4963; (l) Velusamy, S.; Punniyamurthy, T.
Tetrahedron Lett. 2004, 45, 4917; (m) Hamada, N.;
Kazahaya, K.; Shimizu, H.; Sato, T. Synlett 2004, 1074;
(n) Ma, Y.; Jin, T.; Shi, S.; Li, T. Synth. Commun. 2003,
33, 2103; (o) Tamami, B.; Borujeny, P. Synth. Commun.
2003, 33, 4253; (p) Hon, Y.; Lee, C.; Chen, R.; Huang, Y.
Synth. Commun. 2003, 33, 2829; (q) Martel, A.; Chew-
chanwuttiwong, S.; Dujardin, G.; Brown, E. Tetrahedron
Lett. 2003, 44, 1491.
g
4g
a Substrate (S): 0.25 mmol; PTAB: 0.75 mmol; SbBr3: 0.05 mmol;
PhCH2(Et)3NCl: 0.25 mmol; DMSO: 8 mL; temp: room temp-
erature.
To make sure the chemoselectivity for acetalization of
aldehyde to 1,3-dioxanes, the following experiments
were carried out with PTAB–SbBr3–DMSO in the pres-
ence of various alcohols. Benzaldehyde 2 was acetalized
with PTAB–SbBr3 in DMSO in the presence of 1,3-pro-
panediol as expected, while benzophenone 8 was not
acetalized. Further, benzaldehyde 2 was predominantly
converted to 1,3-dioxane in the presence of both metha-
nol and 1,3-propanediol. Benzaldehyde dimethylacetal
was not obtained. Benzaldehyde dimethylacetal was
exchanged with acetal into 1,3-dioxane 4a with PTAB–
SbBr3 in the presence of 1,3-propanediol in DMSO.12
These results accounted for the chemoselective acetaliza-
tion of aldehyde to 1,3-dioxane by PTAB–SbBr3 in
DMSO.
9. trans-Stilbene oxide 1 was easily converted to benzalde-
hyde 2 (79%) with PTAB–SbBr3 in the presence of
1.0 M equiv of benzyltriethylammonium chloride over
epoxide 1 in DMSO for 20 h at room temperature.
Benzyltriethylammonium chloride was found to promote
the oxidation of disubstituted aromatic epoxides and diols
to corresponding aldehydes: Sayama, S. Unpublished
results.
10. cis-Stilbene oxide was converted to 2-phenyl-1,3-dioxane
4a (45%) at 55 °C for 2 h. At room temperature, cis-
stilbene oxide was not easily converted to 4a (9%) with
PTAB–SbBr3 in the presence of 1,3-propanediol, accom-
panied by hydrobenzoin (60%). On the contrary, trans-4-
chlorostilbene oxide was converted to 2-phenyl-1,3-di-
oxane 4a (81%) and 2-(4-chlorophenyl)-1,3-dioxane (81%)
under the same reaction conditions. Consequently, trans-
epoxides were more smoothly oxidized and converted to
the corresponding 1,3-dioxanes by this method than cis-
epoxides.
In conclusion, the PTAB–SbBr3 in DMSO-1,3-diol sys-
tem was found to be a chemoselective method for the
oxidative transformation of disubstituted aromatic
epoxide and 1,2-diols into 1,3-dioxanes without overox-
idation to carboxylic acid. Furthermore, this system was
also confirmed to be an alternative mild and chemoselec-
tive procedure for the acetalization of aldehydes to 1,3-
dioxanes without dehydrating at room temperature.13,14
References and notes
1. (a) Ishihara, K. In Lewis Acids in Organic Synthesis;
Yamamoto, H., Ed.; Wiley-VCH: New York, 2000; Vol. 2,
p 523; (b) Huang, Y.-Z.; Zhou, Z.-L. In Comprehensive
Organometallic Chemistry II; McKillop, A., Ed.; Perg-
amon: Oxford, 1995; Vol. 11, p 487.