Full Papers
doi.org/10.1002/ejic.202100022
[36] T. Nishioka, T. Shibata, I. Kinoshita, Organometallics 2007, 26, 1126–
[76] J. P. Lange, E. Van Der Heide, J. Van Buijtenen, R. Price, ChemSusChem
2012, 5, 150–166.
1128.
[37] P. L. Polavarapu, L. P. Fontana, H. E. Smith, J. Am. Chem. Soc. 1986, 108,
[77] Y. He, Y. Ding, C. Ma, J. Di, C. Jiang, A. Li, Green Chem. 2017, 19, 3844–
94–99.
3850.
[38] D. Klomp, T. Maschmeyer, U. Hanefeld, J. A. Peters, Chem. A Eur. J.
2004, 10, 2088–2093.
[39] M. Fujita, T. Hiyama, J. Org. Chem. 1988, 8, 5405–5415.
[40] M. Fujita, T. Hiyama, Tetrahedron Lett. 1987, 28, 2263–2264.
[41] N. Zhu, M. Su, W. M. Wan, Y. Li, H. Bao, Org. Lett. 2020, 22, 991–996.
[42] M. L. Clarke, G. J. Roff, Handbook of Homogeneous Hydrogenation.
Chapter 15. Wiley-VCH, Wiley-VCH, 2007.
[43] T. Kurita, F. Aoki, T. Mizumoto, T. Maejima, H. Esaki, T. Maegawa, Y.
Monguchi, H. Sajiki, Chem. A Eur. J. 2008, 14, 3371–3379.
[44] H. Esaki, R. Ohtaki, T. Maegawa, Y. Monguchi, H. Sajiki, J. Org. Chem.
2007, 72, 2143–2150.
[78] R. Karinen, K. Vilonen, M. Niemelä, ChemSusChem 2011, 4, 1002–1016.
[79] J. B. Binder, J. J. Blank, A. V. Cefali, R. T. Raines, ChemSusChem 2010, 3,
1268–1272.
[80] K. Yan, A. Chen, Energy 2013, 58, 357–363.
[81] H. Du, X. Ma, P. Yan, M. Jiang, Z. Zhao, Z. C. Zhang, Fuel Process.
Technol. 2019, 193, 221–231.
[82] R. M. Mironenko, V. P. Talsi, T. I. Gulyaeva, M. V. Trenikhin, O. B.
Belskaya, React. Kinet. Mech. Catal. 2019, 126, 811–827.
[83] D. E. Zhao, Z. Bababrik, R. Xue, W. Li, Y. Briggs, N. M. Nguyen, D.-T.
Nguyen, U. Crossley, S. P. Wang, S. Wang, B. Resasco, Nat. Catal. 2019,
2, 431–436.
[45] C. P. Lau, L. Cheng, J. Mol. Catal. 1993, 84, 39–50.
[46] A. Call, C. Casadevall, F. Acuña-Parés, A. Casitas, J. Lloret-Fillol, Chem.
Sci. 2017, 8, 4739–4749.
[47] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686.
[48] X. Wu, J. Liu, X. Li, A. Zanotti-Gerosa, F. Hancock, D. Vinci, J. Ruan, J.
Xiao, Angew. Chem. Int. Ed. 2006, 45, 6718–6722; Angew. Chem. 2006,
118, 6870–6874.
[49] Y. Himeda, N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T.
Hirose, K. Kasuga, Chem. A Eur. J. 2008, 14, 11076–11081.
[50] A. Bényei, F. Joó, J. Mol. Cat. 1990, 58, 161–163.
[51] A. N. Ajjou, J. L. Pinet, J. Mol. Catal. A 2004, 214, 203–206.
[52] F. Joó, A. Bényei, J. Organomet. Chem. 1989, 363, 19–21.
[53] M. C. Carrión, M. Ruiz-Castañeda, G. Espino, C. Aliende, L. Santos, A. M.
Rodríguez, B. R. Manzano, F. A. Jalón, A. Lledós, ACS Catal. 2014, 4,
1040–1053.
[84] T. Werpy, A. Petersen, J. Bozell, J. Holladay, A. White, D. Manheim, L.
Eliot, L. Lasure, S. Jones, U. S. Dep. Energy. 2004, 1–67.
[85] Y. Liu, L. Chen, T. Wang, Q. Zhang, C. Wang, J. Yan, L. Ma, ACS
Sustainable Chem. Eng. 2015, 3, 1745–1755.
[86] L. Vilcocq, A. Cabiac, C. Especel, S. Lacombe, D. Duprez, Catal. Today
2015, 242, 91–100.
[87] B. Kusserow, S. Schimpf, P. Claus, Adv. Synth. Catal. 2003, 345, 289–299.
[88] M. E. Ortiz, J. Bleckwedel, R. R. Raya, F. Mozzi, Appl. Microbiol.
Biotechnol. 2013, 97, 4713–4726.
[89] Barbieri G.; Barone C.; Bhagat A.; Caruso G.; Conley Z. R.; Parisi S, The
Influence of Chemistry on New Foods and Traditional Products.
Chapter 4. Sweet Compounds in Foods: Sugar Alcohols., Springer
International Publishing, Berlin, 2014.
[90] A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed. 2012,
51, 2564–2601; Angew. Chem. 2012, 124, 2614–2654.
[54] W. H. Wang, J. F. Hull, J. T. Muckerman, E. Fujita, T. Hirose, Y. Himeda,
[91] Y. Kwon, M. T. M. Koper, ChemSusChem 2013, 6, 455–462.
[92] M. Silveira, R. Jonas, Appl. Microbiol. Biotechnol. 2002, 59, 400–408.
[93] M. M. Silveira, E. Wisbeck, C. Lemmel, G. Erzinger, J. P. Lopes Da Costa,
M. Bertasso, R. Jonas, J. Biotechnol. 1999, 75, 99–103.
Chem. A Eur. J. 2012, 18, 9397–9404.
[55] M. Ruiz-Castañeda, M. C. Carrión, L. Santos, B. R. Manzano, G. Espino,
F. A. Jalón, ChemCatChem 2018, 10, 5541–5550.
[56] B. J. Frost, C. A. Mebi, Organometallics 2004, 23, 5317–5323.
[57] C. A. Mebi, B. J. Frost, Organometallics 2005, 24, 2339–2346.
[58] M. Ruiz-Castañeda, A. M. Rodríguez, A. H. Aboo, B. R. Manzano, G.
Espino, J. Xiao, F. A. Jalón, Appl. Organomet. Chem. 2020, 34, e6003.
[59] J. Fidalgo, M. Ruiz-Castañeda, G. García-Herbosa, A. Carbayo, F. A.
Jalón, A. M. Rodríguez, B. R. Manzano, G. Espino, Inorg. Chem. 2018, 57,
14186–14198.
[60] Á. Molnár, A. Papp, Coord. Chem. Rev. 2017, 349, 1–65.
[61] Y. Yang, D. J. Miller, S. B. Hawthorne, J. Chem. Eng. Data 1997, 42, 908–
913.
[94] Benaglia M., Ed. Recoverable and Recyclable Catalysts, Wiley And Sons,
2009.
[95] C. Romain, S. Gaillard, M. K. Elmkaddem, L. Toupet, C. Fischmeister,
C. M. Thomas, J. L. Renaud, Organometallics 2010, 29, 1992–1995.
[96] L. Colina-Vegas, W. Villarreal, M. Navarro, C. R. De Oliveira, A. E.
Graminha, P. I. D. S. Maia, V. M. Deflon, A. G. Ferreira, M. R. Cominetti,
A. A. Batista, J. Inorg. Biochem. 2015, 153, 150–161.
[97] H. Hayashi, S. Ogo, T. Abura, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125,
14266–14267.
[98] A. Comas-Vives, G. Ujaque, A. Lledós, Inner- and Outer-Sphere Hydro-
genation Mechanisms: A Computational Perspective, Elsevier Inc., 2010.
[99] O. Eisenstein, R. H. Crabtree, New J. Chem. 2013, 37, 21–27.
[100] W. J. Hehre, K. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–
2261.
[62] C. Leiva, H. Christine Lo, R. H. Fish, J. Organomet. Chem. 2010, 695,
145–150.
[63] T. M. Townsend, C. Kirby, A. Ruff, A. R. O’Connor, J. Organomet. Chem.
2017, 843, 7–13.
[64] B. Mostafa, S. M. Habibi-Khorassani, M. Shahraki, J. Phys. Org. Chem.
2017, 30, 1–11.
[65] S. Ogo, T. Abura, Y. Watanabe, Organometallics 2002, 21, 2964–2969.
[66] T. Abura, S. Ogo, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc. 2003,
125, 4149–4154.
[67] C. Aliende, M. Pérez-Manrique, F. A. Jalón, B. R. Manzano, A. M.
Rodríguez, G. Espino, Organometallics 2012, 31, 6106–6123.
[68] X. Xu, L. Li, W. Han, J. Luo, D. Zhang, Y. Wang, G. Li, Catal. Commun.
2018, 109, 50–54.
[101] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J.
DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
[102] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim.
Acta 1990, 77, 123–141.
[103] A. Ehlers, A. W. Böhme, M. Dapprich, S. Gobbi, A. Höllwarth, V. Jonas,
K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett.
1993, 208, 237–240.
[104] R. B. Sunoj, M. Anand, Phys. Chem. Chem. Phys. 2012, 14, 12715–12736.
[105] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113,
6378–6396.
[69] Z. K. Gao, Y. C. Hong, Z. Hu, B. Q. Xu, Catal. Sci. Technol. 2017, 7, 4511–
4519.
[106] H. P. Hratchian, H. B. Schlegel, J. Chem. Phys. 2004, 120, 9918–9924.
[107] H. P. Hratchian, H. B. Schlegel, J. Chem. Theory Comput. 2005, 1, 61–69.
[70] N. Siddqui, B. Sarkar, C. Pendem, R. Khatun, L. N. S. Konthala, T. Sasaki,
A. Bordoloi, R. Bal, Catal. Sci. Technol. 2017, 7, 2828–2837.
[71] Y. Ma, Z. Li, Appl. Surf. Sci. 2018, 452, 279–285.
[72] S. Jiménez, J. A. López, M. A. Ciriano, C. Tejel, A. Martínez, R. A.
Sánchez-Delgado, Organometallics 2009, 28, 3193–3202.
[73] Á. Kathó, I. Szatmári, G. Papp, F. Joó, Chimia 2015, 69, 339–344.
[74] I. Szatmári, G. Papp, F. Joó, Á. Kathó, Catal. Today 2015, 247, 14–19.
[75] S. Xu, D. Pan, Y. Wu, X. Song, L. Gao, W. Li, L. Das, G. Xiao, Fuel Process.
Technol. 2018, 175, 90–96.
Manuscript received: January 12, 2021
Revised manuscript received: February 23, 2021
Accepted manuscript online: March 1, 2021
Eur. J. Inorg. Chem. 2021, 1358–1372
1372
© 2021 Wiley-VCH GmbH