3 (a) Nguyen, T.-M.; Chang, S. C.; Condon, B.; Slopek, R.; Graves, E.; Yoshioka-Tarver, M. Ind. Eng. Chem. Res.,
2013, 52, 4715; (b) Nguyen, T.-M. D.; Chang, S. C.; Condon, B.; Uchimiya, M.; Fortier, C. Polym. Adv. Technol.,
2012, 23, 1555; (c) Gaan, S.; Liang, S.; Mispreuve, H.; Perler, H.; Naescher, R.; Neisius, M. Polym. Degrad.
Stabil., 2015, 113, 180.
4 (a) Li, S. O. J. Am. Chem. Soc., 1952, 74, 5959; (b) Timperley, C. M.; Saunders, S. A.; Szpalek, J.; Waters, M. J.
J. Fluorine Chem., 2003, 119, 161; (c) Jones S.; Smanmoo, C. Tetrahedron Lett., 2004, 45, 1585; (d) Zhou, Y.;
Wang, G.; Saga, Y.; Shen, R.; Goto, M.; Zhao Y.; Han, L.-B. J. Org. Chem., 2010, 75, 7924; (e) Bandyopadhyay, P.;
Sathe, M.; Tikar, S. N.; Yadav, R.; Sharma, P.; Kumar, A.; Kaushik, M. P. Bioorg. Med. Chem. Lett., 2014, 24,
2934; (f) Nguyen, T.-M.; Chang, S.; Condon, B. Polym. Adv. Technol., 2014, 25, 665; (g) Mlodnosky, K. L.;
Holmes, H. M.; Lain, V. Q.; Berkman, C. E. Tetrahedron Lett., 1997, 38, 8803; (h) Xiao, W.; Zhou, C.-Y.; Che,
C.-M. Chem. Commun. 2012, 48, 5871; (i) Pan, C.; Jin, N.; Zhang, H.; Han, J.; Zhu, C. J. Org. Chem., 2014, 79,
9427; (j) Kim, H.; Park, J.; Kim, J.; Chang, S. Org. Lett., 2014, 16, 5466.
5 (a) Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660; (b) Wang, G.; Shen, R.; Xu, Q.; Goto,
M.; Zhao, Y.; Han, L.-B. J. Org. Chem., 2010, 75, 3890; (c) Xiong, B.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S.-F.;
Han, L.-B. Tetrahedron, 2013, 69, 9373; (d) Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.;
Jaffrès, P.-A. Beilstein J. Org. Chem., 2014, 10, 1166.
6 (a) Jin, X.; Yamaguchi, K.; Mizuno, N. Org. Lett., 2013, 15, 418; (b) Fraser, J.; Wilson, L. J.; Blundell, R. K.;
Hayes, C. J. Chem. Commun., 2013, 49, 8919; (c) Wang, G.; Yu, Q.-Y.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron Lett.,
2013, 54, 6230.
7 (a) Dhineshkumar, J.; Prabhu, K. R. Org. Lett. 2013, 15, 6062; (b) Dar, B. A.; Dangroo, N. A.; Gupta, A.; Wali,
A.; Khuroo, M. A.; Vishwakarma, R. A.; Singh, B. Tetrahedron Lett. 2014, 55, 1544.
8 (a) Tan, H.; Li, M.; Liang, F. RSC Adv., 2014, 4, 33765; (b) Wei, Y.; Lin, S.; Liang, F. Org. Lett., 2012, 14, 4202;
(c) Wei, Y.; Lin, S.; Liang, F.; Zhang, J. Org. Lett., 2013, 15, 852; (d) Wei, Y.; Liang F.; Zhang, X. Org. Lett., 2013,
15, 5186; (e) Li, Y.; Zhang, L.; Yuan, H.; Liang F.; Zhang, J. Synlett 2015, 26, 116.
9 For an early work on the reaction of trialkyl phosphites with N-haloimides, see: Tsolis, A. K.; McEwen, W. E.;
VanderWerf, C. A. Tetrahedron Lett. 1964, 43, 3217.
10 HBr side-product would consume 1.0 equiv of DBU.
11 General procedure for the preparation of 2 (2a as an example): To a solution of NBP (1.5 mmol, 0.339 g) and
DBU (1.5 mmol, 0.218 mL) in MeCN (2.0 mL), ethyl phenylphosphinate 1a (1.0 mmol, 0.154 mL) was added.
o
The reaction mixture was stirred at 0 C for 10 min. After the starting material 1a was consumed as indicated by
TLC, the reaction mixture was poured into water and then extracted with CH2Cl2 (3 × 10 mL). The combined
organic phase was washed with water (3 × 10 mL), dried over anhydrous MgSO4, filtered and concentrated under
reduced pressure. The crude product was purified by flash chromatography (silica gel, petroleum ether : ethyl
acetate = 3 : 1) to give 2a (268 mg, 85%) as a white solid.
11 CCDC number 1407192 contains the supplementary crystallographic data for this paper. The data can be
obtained
12 The reason for this is unclear at the moment.
free
of
charge
from
The
Cambridge
Crystallographic
Data
Centre
via
13 The existence of strong interaction between NBP and DBU has been demonstrated by i) DFT calculation; ii) 1H
NMR study; and iii) the ionic conductivity measurement. See ref. 8e.
14 Only in the case of NBP mixed with DBU firstly, followed by the addition of P(O)―H compounds, can the
target compound be observed. That P-atom acting as a nucleophile to directly react with NBP in the first step was
tentatively excluded. Please refer to: Mitova, V.; Koseva N.; Troev, K. RSC Adv., 2014, 4, 64733.