10.1002/anie.201913281
Angewandte Chemie International Edition
COMMUNICATION
2013, 505, 199-203. g) S. Singh, J. Bruffaerts, A. Vasseur, I. Marek,
Nat. Commun. 2017, 8, 14200. h) L. Mantilli, D. Gérard, S. Torche,
C. Besnard, C. Mazet, Angew. Chem. Int. Ed. 2009, 48, 5143-5147.
i) E. Larionov, L. Lin, L. Guénée, C. Mazet, J. Am. Chem. Soc. 2014,
136, 16882-16894. g) H. Li, C. Mazet, J. Am. Chem. Soc. 2015, 137,
10720-10727. k) L. Lin, C. Romano, C. Mazet, J. Am. Chem. Soc.
2016, 138, 10344-10350. l) C. Romano, C. Mazet, J. Am. Chem.
Soc. 2018, 140, 4743-4750. m) W. N. Palmer, T. Diao, I. Pappas, P.
J. Chirik, ACS Catal. 2015, 5, 622-626. n) M. L. Scheuermann, E. J.
Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716-2719. o) J. V.
Obligacion, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 19107-19110.
p) M. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, J. Am.
Chem. Soc. 2017, 139, 12161-12164. q) F. Juliá-Hernández, T.
Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84-88. r) S.-Z.
Sun, M. Börjesson, R. Martin-Montero, R. Martin, J. Am. Chem. Soc.
2018, 140, 12765-12769. s) D. B. Grotjahn, C. R. Larsen, J. L.
Gustafson, R. Nair, A. Sharma, J. Am. Chem. Soc. 2007, 129,
9592-9593. t) G. Erdogan, D. B. Grotjahn, J. Am. Chem. Soc. 2009,
131, 10354-10355. u) C. R. Larsen, D. B. Grotjahn, J. Am. Chem.
Soc. 2012, 134, 10357-10360. v) T.-L. Liu, T. W. Ng, Y. Zhao, J. Am.
Chem. Soc. 2017, 139, 3643-3646. w) R.-Z. Huang, K. K. Lau, Z. Li,
T.-L. Liu, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 14647-14654. x) F.
Chen, K. Chen, Y. Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem.
Soc. 2017, 139, 13929-13935. y) Y. He, Y. Cai, S. Zhu, J. Am.
Chem. Soc. 2017, 139, 1061-1064. z) J. Xiao, Y. He, F. Ye, S. Zhu,
Chem. 2018, 4, 1645-1657. aa) F. Zhou, J. Zhu, Y. Zhang, S. Zhu,
Angew. Chem. Int. Ed. 2018, 57, 4058-4062. ab) Y. Zhang, B. Han,
S. Zhu, Angew. Chem. Int. Ed. 2019, 58, 13860-13864. ac) Y.
Zhang, X. Xu, S. Zhu, Nat. Commun. 2019, 10, 1752. ad) F. Zhou,
Y. Zhang, X. Xu, S. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1754-
1758.
3939. i) W. Wang, C. Ding, Y. Li, Z. Li, Y. Li, L. Peng, G. Yin, Angew.
Chem. Int. Ed. 2019, 58, 4612-4616.
[6]
There exist only three reports using enelactam or aryl enol ether in
chain walking reactions, see: a) H. H. Patel, M. B. Prater, S. O. Jr
Squire, M. S. Sigman, J. Am. Chem. Soc. 2018, 140, 5895-5898. b)
Q. Yuan, M. S. Sigman, J. Am. Chem. Soc. 2018, 140, 6527-6530.
c) Q. Yuan, M. S. Sigman, Chem. Eur. J. 2019, 25, 10823-10827.
a) E. Taskinen, J. Chem. Soc., Perkin Trans. 2. 2001, 1824-1834. b)
R. F. Algera, Y. Ma, D. B. Collum, J. Am. Chem. Soc. 2017, 139,
11544-11549.
[7]
[8]
a) H. Wakamatsu, M. Nishida, N. Adachi, M. Mori, J. Org. Chem.
2000, 65, 3966-3970. b) C. Su, P. G. Williard, Org. Lett. 2010, 12,
5378-5381. c) E. Larionov, H. Li, C. Mazet, Chem. Commun. 2014,
50, 9816-9826. d) A. L. Kocen, M. Brookhart, O. Daugulis, Chem.
Commun. 2017, 53, 10010-10013. e) Y. Yamasaki, T. Kumagai, S.
Kanno, F. Kakiuchi, T. Kochi, J. Org. Chem. 2018, 83, 9322-9333.
a) S. Kobayashi, K. Manabe, H. Ishitani, J. Matsuo, Science of
Synthesis, Vol. 4, Chapter 4.16 (Ed.: I. Fleming), Thieme: Stuttgart,
Germany, 1999. b) Main Group Metals in Organis Synthesis, Vol. 2,
Chapter 10.2 (Eds.: H. Yamamoto, K. Oshima), Wiley-VCH:
Weinheim, 2004. c) W. Gati, H. Yamamoto, Acc. Chem. Res. 2016,
49, 1757-1768. d) W. Zhao, J. Sun, Chem. Rev. 2018, 118, 10349-
10392.
[9]
[10] In the absence of B2pin2, the major side-reaction is the
hydrogenation with H2 generated from HBpin (Table 1, entry 14).
The role of B2pin2 in the standard conditions is thought to consume
the H2 and suppress the hydrogenation. The structure of
hydroboration product is in SI.
[11] C. J. Lata, C. M. Crudden, J. Am. Chem. Soc. 2010, 132, 131-137.
[12] a) S. Shimada, A. S. Batsanov, J. A. K. Howard, T. B. Marder,
Angew. Chem. Int. Ed. 2001, 40, 2168-2171. b) M. A. Esteruelas, M.
Oliván, A. Vélez, Organometallics 2015, 34, 1911-1924. c) M. A.
Esteruelas, M. Oliván, A. Vélez, J. Am. Chem. Soc. 2015, 137,
12321-12329.
[5]
For selected examples, see: a) A. Seayad, M. Ahmed, H. Klein, R.
Jackstell, T. Gross, M. Beller, Science 2002, 297, 1676-1678. b) X.
Jia, Z. Huang, Nat. Chem. 2015, 8, 157-161. c) Y. Ebe, M. Onoda, T.
Nishimura, H. Yorimitsu, Angew. Chem. Int. Ed. 2017, 56, 5607-
5611. d) A. J. Borah, Z. Shi, J. Am. Chem. Soc. 2018, 140, 6062-
6066. e) T. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki, F.
Kakiuchi, J. Am. Chem. Soc. 2012, 134, 16544-16547. f) T.
Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, T. Kochi, J. Am.
Chem. Soc. 2015, 137, 16163-16171. g) D. G. Kohler, S. N. Gockel,
J. L. Kennemur, P. J. Waller, K. L. Hull, Nat. Chem. 2018, 10, 333-
340. h) X. Chen, Z. Cheng, J. Guo, Z. Lu, Nat. Commun. 2018, 9,
[13] R. Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem.
Soc. 2011, 133, 16794-16797.
[14] R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier,
H. K. Scott, V. K. Aggarwal, Angew. Chem. Int. Ed. 2011, 50, 3760-
3763.
[15] S. N. Mlynarski, C. H. Schuster, J. P. Morken, Nature 2013, 505,
386-390.
[16] E. K. Edelstein, A. C. Grote, M. D. Palkowitz, J. P. Morken, Synlett
2018, 29, 1749-1752.
This article is protected by copyright. All rights reserved.