1580
Russ.Chem.Bull., Int.Ed., Vol. 59, No. 8, August, 2010
Tsymbal et al.
6. J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang, L. Ji,
J. Inorg. Biochem., 2002, 91, 269.
7. D. B. Amabilino, J. F. Stoddart, Chem. Rev., 1995, 95, 2725.
8. K. A. Hirsch, S. R. Wilson, J. S. Moore, Chem. Eur. J., 1997,
3, 765.
9. E. Arunkumar, P. Chithra, A. Ajayaghosh, J. Am. Chem.
Soc., 2004, 126, 6590.
10. D. Horn, J. Rieger, Angew. Chem., Int. Ed. Engl., 2001, 40,
4331.
these interactions result in lamellar crystal structures
(Fig. 3), which are formed by the alternating hydrophobic
and hydrophilic layers as a result of "faceꢀtoꢀface" packꢀ
ing of cations. On the whole, such layered structure is
characteristic of a majority of macrocyclic compounds
bearing aryl substituents (Table 5). Similar packing is typiꢀ
cal of the complex [CuL4(ClO4)2]; however, due to other
spatial orientation of the aromatic fragment, it does not
lead to the layered structure.
11. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M.
Lieber, Nature, 2002, 415, 617.
In conclusion, in the present work we developed a
method for the synthesis of novel amphiphilic azaꢀ
macrocyclic copper(II) and nickel(II) complexes bearing
different aromatic substituents. It is shown that the nature
of the substituent does not considerably influence specꢀ
tral and electrochemical properties of the compounds
obtained. On the base of the Xꢀray diffraction analysis
of three copper complexes, we established the presence of
similar stack structures in the crystals, where the perchlorꢀ
ate anions serve as the bridges between the macrocyclic
cations due to formation of coordination bonds with the
metal ion and hydrogen bonds with the amino groups of
the adjacent macrocycle. The substitution of the methoxy
group for the methyl group in the aromatic fragment has
negligible effect on the crystal structure, thought it results
in replacement of the CH—πꢀinteraction for π—πꢀstackꢀ
ing as the attractive noncovalent forces. At the same time,
the introduction of additional methylene unit in the bridge
between the aryl and macrocyclic fragments considerably
changes crystal packing. In this case, CH—πꢀinteractions
between the aromatic substituents and methylene groups
of the sixꢀmembered chelate rings of the macrocyclic
ligand are present. The crystal structure of the former two
compounds is layered with alternate hydrophobic and
hydrophilic regions.
12. G. R. Desiraju, Crystal Engineering: The Design of Organic
Solids, Material Science Monographs 54, Elsevier, Amsterdam—
New York, 1989, 312 pp.
13. G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
14. P. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti,
Angew. Chem., Int. Ed. Engl., 2005, 44, 1816.
15. M. P. Suh, H. R. Moon, in Adv. Inorg. Chem., Eds R. van
Eldik, K. BowmanꢀJames, Academic Press, San Diego, 2006,
Vol. 59, p. 39.
16. Ya. D. Lampeka, L. V. Tsymbal, Teoret. Eksperim. Khimiya,
2004, 43, 331 [Theor. Experim. Chem. (Engl. Transl.), 2004,
43, 345].
17. K. B. Yatsimirsky, Ya. D. Lampeka, Fizikokhimiya kompleksov
metallov s macrotsiklicheskimi ligandami [Physicochemistry of
metal complexes with macrocyclic ligands], Naukova dumka,
Kiev, 1985, 256 pp. (in Russian).
18. M. P. Suh, in Adv. Inorg. Chem., Ed. G. Sykes, Academic
Press, San Diego, 1996, Vol. 44, p. 93.
19. I. M. Maloshtan, Ya. D. Lampeka, Zh. Neorgan. Khim.,
1996, 41, 1845 [Russ. J. Inorg. Chem. (Engl. Transl.), 1996,
41, 1749].
20. I. M. Maloshtan, S. V. Rosokha, Ya. D. Lampeka,
Zh. Neorgan. Khim., 1994, 39, 792 [Russ. J. Inorg. Chem.
(Engl. Transl.), 1994, 39, 759].
21. G. M. Sheldrick, SHELXTL 5.1, Bruker AXS, Madison, WI,
1998.
22. S. V. Rosokha, Ya. D. Lampeka, I. M. Maloshtan, J. Chem.
Soc., Dalton Trans., 1993, 631.
23. L. V. Tsymbal, S. V. Rosokha, Ya. D. Lampeka, J. Chem.
Soc., Dalton Trans., 1995, 2633.
24. P. Comba, Ya. D. Lampeka, A. Y. Nazarenko, A. I. Prikhod′ko,
H. Pritzkow, J. Taraszewska, Eur. J. Inorg. Chem., 2002, 1871.
25. V. Gutmann, G. Resch, W. Linert, Coord. Chem. Rev., 1982,
43, 133.
26. M. Boiocchi, L. Fabbrizzi, F. Foti, M. Vazquez, Dalton
Trans., 2004, 2616.
The obtained data show that slight variations in the
structure of the related compounds is a promising apꢀ
proach for fine control over their packing in the crystal
state and can result in appearance of one or other types
of noncovalent intermolecular interactions.
References
27. A. G. Lappin, A. McAuley, in Adv. Inorg. Chem., Ed.
G. Sykes, Academic Press, San Diego, 1988, Vol. 32, p. 241.
28. E. Zeigerson, G. Ginzburg, L. J. Kirschenbaum, D. Meyerstein,
J. Electroanal. Chem. Intefacial Electrochem., 1981, 127, 113.
29. M. Ciampolini, L. Fabbrizzi, M. Licchelli, A. Perotti,
F. Pezzini, A. Poggi, Inorg. Chem., 1986, 25, 4131.
30. P. Chaudhuri, K. Wieghardt, in Progr. Inorg. Chem., Ed.
K. D. Karlin, John Wiley and Sons, Chichester—New York,
2001, Vol. 50, p. 151.
31. J. C. A. Boeyens, S. M. Dobson, in Stereochemistry of Organoꢀ
metallic and Inorganic Compounds, Vol. 2, Ed. I. Bernal,
Elsevier, Amsterdam—New York, 1987, p. 1.
32. M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama,
H. Suezawa, CrystEngComm., 2009, 11, 1757.
1. J.ꢀM. Lehn, Supramolecular Chemistry. Concepts and Perspecꢀ
tives, VCH Verlags GmbH, Weinheim—New York—Basel—
Cambridge—Tokyo, 1995, 271 pp.
2. J. W. Steed, J. L. Atwood, Supramolecular Chemistry, John
Wiley and Sons, Chichester—New York—Weinheim—Brisbane—
Singapore—Toronto, 2000, 772 pp.
3. H.ꢀJ. Schneider, A. K. Yatsimirsky, Principles and Methods
in Supramolecular Chemistry, John Wiley and Sons, Chichester—
New York—Weinheim—Brisbane—Singapore—Toronto,
1999, 349 pp.
4. M. Muraki, Protein Peptide Lett., 2002, 9, 195.
5. K. M. Guckian, B. A. Schweitzer, R. X.ꢀF. Ren, C. J. Sheils,
D. C. Tahmassebi, E. T. Kool, J. Am. Chem. Soc., 2000, 122,
2213.