Angewandte
Chemie
Keywords: amino acids · chirality· conformation analysis ·
.
helical structures · peptidomimetics
[1] a) C. Branden, J. Tooze, Introduction to Protein Structure,
Garland, NewYork, 1991, pp. 1 – 31; b) J. A. Robinson, Synlett
1999, 429 – 441; c) D. Seebach, J. L. Matthews, Chem. Commun.
1997, 2015 – 2022; d) S. H. Gellman, Acc. Chem. Res. 1998, 31,
173 – 180.
[2] Chiral N-alkylated glycine oligopeptides (peptoids) form a one-
handed helix affected by the chiralities at the N-alkyl side-
chains; however, the peptoids may have cis amides. See: C. W.
Wu, K. Kirshenbaum, T. J. Sanborn, J. A. Patch, K. Huang, K. A.
Dill, R. N. Zuckermann, A. E. Barron, J. Am. Chem. Soc. 2003,
125, 13525 – 13530.
[3] a) I. L. Karle, P. Balaram, Biochemistry 1990, 29, 6747 – 6756;
b) M. Tanaka, N. Imawaka, M. Kurihara, H. Suemune, Helv.
Chim. Acta 1999, 82, 494 – 510; c) M. Gatos, F. Formaggio, M.
Crisma, C. Toniolo, G. M. Bonora, Z. Benedetti, B. D. Blasio, R.
Iacovino, A. Santini, M. Saviano, J. Kamphuis, J. Pept. Sci. 1997,
3, 110 – 122; d) B. Jaun, M. Tanaka, P. Seiler, F. N. M. Kühnle, C.
Braun, D. Seebach, Liebigs Ann./Recl. 1997, 1697 – 1710; e) M.
Crisma, A. Moretto, M. Rainaldi, F. Formaggio, Q. B. Broxter-
man, B. Kaptein, C. Toniolo, J. Pept. Sci. 2003, 9, 620 – 637; f) N.
Imawaka, M. Tanaka, H. Suemune, Helv. Chim. Acta 2000, 83,
2823 – 2835; g) M. Tanaka, S. Nishimura, M. Oba, Y. Demizu, M.
Kurihara, H. Suemune, Chem. Eur. J. 2003, 9, 3082 – 3090.
[4] Tonioloꢀs group reported that homopeptides of a C2-symmetric
binaphthyl dAA with only axial chirality form one-handed 310-
helices in solution. See: J. P. Mazaleyrat, K. Wright, A. Gaucher,
M. Wakselman, S. Oancea, F. Formaggio, C. Toniolo, V. Setnicka,
J. Kapitan, T. A. Keiderling, Tetrahedron: Asymmetry 2003, 14,
1879 – 1893.
[5] I. Takahashi, K. Odashima, K. Koga, Tetrahedron Lett. 1984, 25,
973 – 976.
[6] See the Supporting Information for synthetic procedures,
spectroscopic data of newcompounds, IR spectra, 1H NMR
experiments (DMSO, TEMPO, concentration effects, and the
ROESY spectrum), molecular mechanics calculations, torsion
angles, and hydrogen-bond parameters.
[7] M. Tanaka, Y. Demizu, M. Doi, M. Kurihara, H. Suemune, Pept.
Sci. 2003 (Proceedings of the 40th JPS) 2004, 109 – 110.
[8] a) C. Toniolo, A. Polese, F. Formaggio, M. Crisma, J. Kamphuis,
J. Am. Chem. Soc. 1996, 118, 2744 – 2745; b) P. Pengo, L.
Pasquato, S. Moro, A. Brigo, F. Fogolari, Q. B. Broxterman, B.
Kaptein, P. Scrimin, Angew. Chem. 2003, 115, 3510 – 3514;
Angew. Chem. Int. Ed. 2003, 42, 3388 – 3392.
[9] CCDC-236749 and CCDC-236750 contain the supplementary
crystallographic data for this paper. These data can be obtained
from the Cambridge Crystallographic Data Center, 12, Union
Road, Cambridge CB2 1EZ, UK; fax: (+ 44) 1223–336–033 or
deposit@ccdc.cam.ac.uk). Crystal data: 8: 3(C57H88N6O21), Mr =
3579.99 (1193.33), space group P21, a = 22.889, b = 11.9061, c =
33.711 ꢁ, b = 91.8878, V= 9182.0 ꢁ3, Z = 6, T= 90 K, m(MoKa) =
0.99 cmÀ1, 31196 reflections measured, 29355 unique reflections
(Rint = 0.0326) R1 (I > 2s) = 0.0775, wR2 (I > 2s) = 0.1972,
GOF = 1.095. 9: C73H114N8O27·3H2O, Mr = 1589.77, space group
P21, a = 15.639, b = 16.431, c = 15.989 ꢁ, b = 95.858, V= 4087 ꢁ3,
Z = 2, T= 123 K, m(MoKa) = 1.0 cmÀ1, 16850 reflections mea-
sured, 12478 unique reflections (Rint = 0.0609) R1 (I > 2s) =
0.0579, wR2 (I > 2s) = 0.1401 (I > 2s), GOF = 1.031.
[10] The signs of f, y torsion angles at the C-terminus are opposite to
those of the preceding residues. The average is amino acid
residues (1–7).
Angew. Chem. Int. Ed. 2004, 43, 5360 –5363
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5363