C. Macleod et al. / Tetrahedron Letters 45 (2004) 8879–8882
8881
bound esters 12a0–d0 by treating the latter with the
titanium alkylidenes 11a–c, washing the resin, releasing
the arylammonium salts 13 under acid conditions and
oxidizing to give the quinolines 14. A solid oxidant
was chosen so that it could be removed simply by
filtration.
produced two 7.2–7.3Hz doublets with chemical shifts as
follows: E-6a at dH 7.05 and 6.39, E-6b at dH 7.07 and
5.62, E-6b at dH 6.95 and 5.52, Z-6a at dH 6.31 and 5.70,
Z-6b at dH 6.26 and 5.03, Z-6c at dH 6.24 and 5.83.
16. Compare (a) Maehr, H.; Smallheer, J. M. J. Org. Chem.
1981, 46, 1752–1755, and (b) Wiegand, S.; Schafer, H. J.
Tetrahedron 1995, 51, 5341–5350.
17. Ramadas, K.; Srinivasan, N. Synth. Commun. 1992, 22,
3189–3195.
Acknowledgements
18. Titanium alkylidenes were generated and used according
to the procedure that we have described for the prepara-
tion of indoles.11 The solid-phase reactions were carried
out in normal glassware, but with resin [particle
size = 150–300lm diameter, derived from Merrifield resin
with loading 1.83meq (of benzylic chloride) gꢀ1] con-
tained within porous polypropylene reactors that had an
internal volume of 2.4mL and a pore size of 74lm
(IRORI macrokans, 0.30mequiv of resin-bound ester per
kan). Cleavage from resin is as previously described.11
Manganese dioxide (0.09g, 1.00mmol) was added to a
solution of each crude arylammonium salt in DCM
(10cm3) and the reaction mixture was heated under reflux
for 1–2h. After this time, the reaction mixture was filtered
through a Celite plug, washing with CH2Cl2 (10cm3). The
combined organic phases were washed with saturated
sodium bicarbonate (20cm3), dried over sodium sulfate,
and concentrated to yield the desired quinolines.
EPSRC and GSK for funding.
References and notes
1. Recent reviews: (a) Du, W. Tetrahedron 2003, 59, 8649–
8687; (b) Michael, J. P. Nat. Prod. Rep. 2003, 20, 476–493.
2. Recent methods for the preparation of 2-substituted
quinolines include: (a) Sangu, K.; Fuchibe, K.; Akiyama,
T. Org. Lett. 2004, 6, 353–355; (b) Cho, C. S.; Kim, B. T.;
Choi, H.-J.; Kim, T.-J.; Shim, S. C. Tetrahedron 2003, 59,
7997–8002; (c) Du, W.; Curran, D. P. Org. Lett. 2003, 5,
1765–1768; (d) McNaughton, B. R.; Miller, B. L. Org.
Lett. 2003, 5, 4257–4259; (e) Song, S. J.; Cho, S. J.; Park,
D. K.; Kwon, T. W.; Jenekhe, S. A. Tetrahedron Lett.
2003, 44, 255–257; (f) Huma, H. Z. S.; Halder, R.; Kalra,
S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485–
6488.
19. Characterization data: 2-phenethylquinoline 14aa0 (yellow
oil); data in agreement with literature.2b 8-Methoxy-2-
phenethylquinoline 14ba0 (yellow oil); mmax (thin film)/
cmꢀ1: 3060–2852, 1602, 1564, 1503; dH (400MHz, CDCl3):
3.14–3.18 (2H, m), 3.35–3.39 (2H, m), 4.10(3H, s), 7.05
(1H, d, J 7.5), 7.09–7.31 (6H, m), 7.35–7.44 (2H, m), 8.02
(1H, d, J 8.4); dC (100MHz, CDCl3): 36.1 (CH2), 50.0
(CH2), 56.2 (CH3), 107.8 (CH), 119.5 (CH), 122.0 (CH),
125.9 (CH), 126.0(CH), 128.0(C), 128.4 (CH), 128.5
(CH), 136.2 (CH), 139.8 (C), 141.6 (C), 155.0(C), 161.0
(C); HRMS: M+ requires C18H17NO, 263.1310, found
263.1308. 8-Methoxy-2-(20-methylpropen-1-yl)-quinoline
14bb0 (yellow oil); mmax (thin film)/cmꢀ1: 3047–2835,
1649, 1600, 1556, 1498; dH (400MHz, CDCl3): 2.00 (3H,
d, J 1.2), 2.14 (3H, d, J 1.2), 4.07 (3H, s), 6.62 (1H, m),
7.02 (1H, dd, J 7.5 and 1.2), 7.33–7.44 (3H, m), 8.05 (1H,
d, J 8.5); dC (100MHz, CDCl3): 19.9 (CH3), 27.3 (CH3),
55.9 (CH3), 107.6 (CH), 119.2 (CH), 122.7 (CH), 125.8
(CH), 126.2 (CH), 127.3 (C), 135.5 (CH), 139.8 (C), 141.4
(C), 155.2 (C), 156.6 (C); HRMS: M+ requires C14H15NO,
213.1154, found 213.1153. 2-(40-Fluorophenyl)-8-meth-
3. (a) Recent reviews of SPS of heterocycles: Dolle, R. E. J.
Comb. Chem 2004, 6, 623–679; (b) Dolle, R. E. J. Comb.
Chem. 2003, 5, 693–753; (c) Bra¨se, S.; Gil, C.; Knepper, K.
´
Bioorg. Med. Chem. 2002, 10, 2415–2437; (d) Krchnak, V.;
Holladay, M. W. Chem. Rev. 2002, 102, 61–91.
4. (a) Demaude, T.; Knerr, L.; Pasau, P. J. Comb. Chem
2004, 6, 768–775; (b) Gopalsamy, A.; Pallai, P. V.
Tetrahedron Lett. 1997, 38, 907–910; (c) Ruhland, T.;
Kunzer, H. Tetrahedron Lett. 1996, 37, 2757–2760.
¨
5. Patteux, C.; Levacher, V.; Dupas, G. Org. Lett. 2003, 5,
3061–3063.
6. (a) Cironi, P.; Tulla-Puche, J.; Barany, G.; Albericio, F.;
´
Alvarez, M. Org. Lett. 2004, 6, 1405–1408; (b) Hoemann,
M. Z.; Melikian-Badalian, A.; Kumaravel, G.; Hauske, J.
R. Tetrahedron Lett. 1998, 39, 4749–4752.
7. For discussions of traceless synthesis see: (a) Gil, C.;
Bra¨se, S. Curr. Opin. Chem. Biol. 2004, 8, 230–237; (b)
Blaney, P.; Grigg, R.; Sridharan, V. Chem. Rev. 2002, 102,
2607–2624.
8. For a review of titanium alkylidenes see Hartley, R. C.;
McKiernan, G. J. J. Chem. Soc., Perkin Trans 1 2002,
2763–2793.
9. Guthrie, E. J.; Macritchie, J.; Hartley, R. C. Tetrahedron
Lett. 2000, 41, 4987–4990.
10. McKiernan, G. J.; Hartley, R. C. Org. Lett. 2003, 5, 4389–
4392.
11. Macleod, C.; McKiernan, G. J.; Guthrie, E. J.; Farrugia,
L. J.; Hamprecht, D. W.; Macritchie, J.; Hartley, R. C. J.
Org. Chem. 2003, 68, 387–401.
12. Macleod, C.; Hartley, R. C.; Hamprecht, D. W. Org. Lett.
2002, 4, 75–78.
13. Roberts, C. F.; Hartley, R. C. J. Org. Chem. 2004, 69,
6145–6148.
14. Sukenik, C. N.; Bergman, R. G. J. Am. Chem. Soc. 1976,
98, 6613–6623.
oxyquinoline 14bc0 (yellow oil); mmax (thin film)/cmꢀ1
:
3002–2836, 1615, 1601, 1559, 1497; dH (400MHz, CDCl3):
4.10(3H, s), 7.07 (1H, d, J 7.4), 7.15–7.21 (2H, m), 7.39–
7.47 (2H, m), 8.02 (1H, d, J 8.6), 8.08–8.13 (3H, m); dC
(100MHz, CDCl3): 56.1 (CH3), 107.2 (CH), 115.7 (d, J
21.4, CH), 119.1 (CH), 119.3 (CH), 126.6 (CH), 128.2 (C),
129.5 (d, J 8.2, CH), 135.9 (C), 136.9 (CH), 140.1 (C),
155.2 (C), 155.5 (C), 163.3 (d, J 249, CF); HRMS: M+
require C16H12FNO, 253.0903, found 253.0904. 6,7-
Methylenedioxy-2-phenethylquinoline 14ca0 (yellow oil);
mmax (thin film)/cmꢀ1: 3032–2856, 1618, 1589, 1512, 1495;
dH (400MHz, CDCl3): 3.10–3.15 (2H, m), 3.19–3.24 (2H,
m), 6.09 (2H, s), 7.02 (1H, s), 7.03 (1H, d, J 8.3), 7.17–7.30
(5H, m), 7.38 (1H, s), 7.85 (1H, d, J 8.3); dC (100MHz,
CDCl3): 36.1 (CH2), 40.6 (CH2), 101.6 (CH2), 102.6 (CH),
105.5 (CH), 119.7 (CH), 123.5 (C), 125.9 (CH), 128.3
(CH), 128.5 (CH), 135.1 (CH), 141.6 (C), 146.1 (C), 147.2
(C), 155.6 (C), 159.5 (C); HRMS: M+requires C18H15NO2,
277.1103, found 277.1102. 2-(40-Fluorophenyl)-6,7-methyl-
enedioxy-quinoline 14cc0 (yellow solid); Mp: 139–142°C;
15. The ratio of geometrical isomers was determined from the
vicinal coupling between signals for the alkene protons in
the 1H NMR spectra of the crude mixtures. The E isomers
produced two 12.8Hz doublets while the Z isomers