Our objective is to utilize rigid geometric factors, e.g.,
macromolecular disks,5 helical macromolecules,6 and cross-
shaped spiro structures,7 to tune supramolecular interactions
among optoelectronic functional moieties. Different kinds
of geometric conformations could be favorable or unfavor-
able for the alignment of functional groups by participating
in the short intermolecular interactions or acting as spacers.
Therefore, incorporating unique rigid geometric conforma-
tions into the optoelectronic groups is a very good approach
to explore novel optoelectronic materials with high perfor-
mance. In this communication, we demonstrate that incor-
porating nonplanar spiro-bridged frameworks into thiophene-
S,S-dioxides is an effective way to tune supramolecular
interactions of oligothiophene-S,S-dioxide chromophores.
Some unusual dimers constructed by spiro-bridged spacers
do not form excimers, which were confirmed by crystal-
lographic data and fluorescent emission spectra. The weak
intermolecular supramolecular interactions among thiophene-
S,S-dioxides were greatly depressed due to the existence of
biphenyl moieties as an “insulated spacer”, which is ben-
eficial to the fluorescent quantum efficiency in the solid
state.
The synthetic route of model compound BSiSDTFO is
outlined in Scheme 1. The spirodithiophenefluorene (SDTF)
was prepared following the synthetic route of spirobifluorene.
Addition of the 3,3-bithienyl Grignard reagent to fluorenone
gave the tertiary alcohol, followed by Friedel-Crafts dehy-
dration cyclization in a mixture of hydrochloride and acetic
acid to obtain SDTF in an almost quantitative yield.
BSiSDTF was easily obtained by 2 equiv of n-BuLi with
SDTF followed by quenching the Me2-t-BuSiCl reagent.
BSiSDTF was oxidized at the thienyl sulfurs by m-CPBA
to afford stable mono-S,S-dioxides BSiSDTFO in 60% yield.8
Scheme 1. Synthetic Route to BSiSDTFO
However, spiro-bridged bis-S,S-dioxides were still not ob-
tained, although largely excessive m-CPBA was attempted.
The structure of BSiSDTFO was confirmed by 1H and 13
C
NMR, MALDI-TOF MS, elemental analysis, and single-
crystal X-ray diffraction. Single crystals of BSiSDTF and
BSiSDTFO were obtained from a CH2Cl2/alcohol solution.9
There is a slight lengthening of the C-S bond next to the
oxygen atom in BSiSDTFO (from mean values of 1.740 and
1.703 in BSiSDTF to 1.772 and 1.744 in BSiSDTFO), which
implies loss of the aromatic conjugation due to oxidation of
the sulfur atom. Various short intermolecular contacts
participate in the molecular packing of BSiSDTFO, including
C-H‚‚‚O, C-H‚‚‚S, and C-H‚‚‚π hydrogen bonds and π-π
stacking (Figure 1). The typical C-H‚‚‚O distance of 2.591
Å is consistent with 2.57 Å, which was observed in the rigid-
core oligothiophene dioxides.10 However, no extremely short
S‚‚‚O and S‚‚‚S separations in BSiSDTFO were observed,
which are the main driving forces to promote self-assembled
three-dimensional networks in planar oligothiophene-S,S-
dioxides.11 Therefore, it is natural to conclude that spiro
frameworks play an important role in interrupting the
supramolecular interactions between S and O atoms or S and
S atoms that lead to the formation of excimer emission and
the increase of the self-quenching probability in the solid
state.
(1) (a) Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook
of Conducting Polymers; Marcel Dekker Inc.: New York, 1998. (b)
Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew.
Chem., Int. Ed. 2003, 42, 3900-3903. (c) Mazzeo, M.; Vitale, V.; Sala, F.
D.; Pisignano, D.; Anni, M.; Barbarella, G.; Favaretto, L.; Zaneli, A.;
Cingolani, R.; Gigli, G. AdV. Mater. 2003, 15, 2060-2063. (d) Pisignano,
D.; Anni, M.; Gigli, G.; Cingolani, R.; Zavelani-Rossi, M.; Lanzani, G.;
Barbarella, G.; Favaretto, L. Appl. Phys. Lett. 2002, 81, 3534-3536. (e)
Barbarella, G.; Zambianchi, M.; Pudova, O.; Paladini, V.; Ventola, A.;
Cipriani, F.; Gigli, G.; Cingolani, R.; Citro, G. J. Am. Chem. Soc. 2001,
123, 11600-11607. (f) Barbarella, G. Chem.-Eur. J. 2002, 8, 5072-5077.
(g) Sotgiu, G.; Zambianchi, M.; Barbarella, G.; Aruffo, F.; Cipriani, F.;
Ventola, A. J. Org. Chem. 2003, 68, 1512-1520.
(9) Data for X-ray structure analysis were collected at room temperature
on a Bruker SMART 1K CCD area detector with graphite-monochromated
Mo KR radiation (λ ) 0.71073 Å). The absorption correction was applied
by integration based on the crystal shape. Structures were solved by direct
methods and refined against F2 with the full-matrix, least-squares methods
using SHELXS-97 and SHELXL-97, respectively. Hydrogen atoms were
found by difference Fourier syntheses and were refined. Crystal data for
BSiSDTF: C33H40S2Si2, M ) 556.95, colorless cuboid 0.35 × 0.20 × 0.20
mm, monoclinic, P21/c, Z ) 8, a ) 25.681(11) Å, b ) 12.073(5) Å, c )
23.725(10) Å, R ) 90°, â ) 117.111°(5), γ ) 90°, V ) 6547(5) Å3, F(000)
) 2384, Fcalcd ) 1.130 Mg m-3, µ (Mo KR) ) 0.255 mm-1, 2θmax ) 50.02°,
reflections collected/unique 29 035/11 504 (Rint ) 0.0331), parameters 667,
final R1 ) 0.0636 (I > 2σ(I)), wR2 ) 0.1241 (all data), S ) 1.018 (all
data). Crystal data for BSiSDTFO: C33H40O2S2Si2, M ) 588.95, green
needle 0.15 × 0.10 × 0.02 mm, triclinic, P1, Z ) 4, a ) 12.45(4), b )
12.94(4), c ) 22.63(7) (3) Å, R ) 80.74° (5), â ) 86.74° (5), γ ) 79.99°
(6), V ) 3543 (18) Å3, F(000) ) 1256, Fcalcd ) 1.104 Mg m-3, µ (Mo KR)
) 0.243 mm-1, 2θmax ) 50.02°, reflections collected/unique 16 005/12 289
(Rint ) 0.1938), parameters 703, final R1 ) 0.2879 (I > 2σ(I)), wR2 )
0.2273 (all data), S ) 0.556 (all data). CCDC 617286 and 617287 contain
the supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre
(2) (a) Fratiloiu, S.; Senthilkumar, K.; Grozema, F. C.; Christian-Pandya,
H.; Niazimbetova, Z. I.; Bhandari, Y. J.; Galvin, M. E.; Siebbeles, L. D.
A. Chem. Mater. 2006, 18 (8), 2118-2129. (b) Drummy, L. F.; Miska, P.
K.; Alberts, D.; Lee, N.; Martin, D. C. J. Phys. Chem. B 2006, 110 (12),
6066-6071. (c) Terenziani, F.; Mongin, O.; Katan, C.; Bhatthula, B. K.
G.; Blanchard-Desce, M. Chem.-Eur. J. 2006, 12, 3089-3102.
(3) Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Bongini,
A.; Arbizzani, C.; Mastragostino, M.; Anni, M.; Gigli, G.; Cingolani, R. J.
Am. Chem. Soc. 2000, 122 (48), 11971-11978.
(4) Xie, Z.; Yang, B.; Li, F.; Cheng, G.; Liu, L.; Yang, G.; Xu, H.; Ye,
L.; Hanif, M.; Liu, S.; Ma, D.; Ma, Y. J. Am. Chem. Soc. 2005, 127 (41),
14152-14153.
(5) Fechtenko¨tter, A.; Tchebotareva, N.; Watson, M.; Mu¨llen, K.
Tetrahedron 2001, 57, 3769-3783.
(6) (a) Marsella, M. J.; Kim, I. T.; Tham, F. J. Am. Chem. Soc. 2000,
122, 974-975. (b) Iwasaki, T.; Kohinata, Y.; Nishide, H. Org. Lett. 2005,
7, 755-758.
(7) Xie, L.-H.; Hou, X.-Y.; Tang, C.; Hua, Y.-R.; Wang, R.-J.; Chen,
R.-F.; Fan, Q.-L.; Wang, L.-H.; Wei, W.; Peng, B.; Huang, W. Org. Lett.
2006, 8, 1363-1366.
(10) Tedesco, E.; Sala, F. D.; Favaretto, L.; Barbarella, G.; Albesa-Jove,
D.; Pisignano, D.; Gigli, G.; Cingolani, R.; Harris, K. D. M. J. Am. Chem.
Soc. 2003, 125 (40), 12277-12283.
(11) Barbarella, G.; Favaretto, L.; Sotgiu, G.; Antolini, L.; Gigli, G.;
Cingolani, R.; Bongini, A. Chem. Mater. 2001, 13, 4112-4122.
(8) Barbarella, G.; Pudova, O.; Arbizzani, C.; Mastragostino, M.; Bongini,
A. J. Org. Chem. 1998, 63, 1742-1745.
1620
Org. Lett., Vol. 9, No. 9, 2007