C. Baldoli et al. / Journal of Organometallic Chemistry 689 (2004) 4791–4802
4801
1.88 (s, 3H, CH3 Thym); 2.5–3.4 (m, 13H, CH + CH2);
3.71 (s, 3H, OCH3); 3.76 (bs, 4H, CH2 Thym); 4.19
(bs, 7H, CH, Fc); 4.3 (bs, 2H, CH, Fc); 4.7 (s, 2H,
CH2Fc); 6.8 (bs, 3H, PhO + CH@); 7.1 ( d, 2H, PhO).
13C NMR (CDCl3, d): 11.6, 11.8, 37.22, 39.1, 39.29,
47.2, 47.8, 48.14, 48.4, 48.7, 52.63, 60.57, 66.56, 68.5,
69.0, 82.0, 110.5, 110.2, 115.0, 127.8, 130.3, 141.3,
141.6, 151.3, 151.5, 156.0, 164.80, 167.9, 168.3, 169.7,
170.72 MS, ESI, 869.3 (M+ + 2). IR (nujol, m, cmꢀ1):
1674 (CONH).
calomel electrode (SCE), inserted into a jacket contain-
ing 3 M aqueous KCl and ensuring contact with the
working solution via a glass joint, in order to avoid
precipitation of the tested substrates within the SCE
porous frit.
Acknowledgements
We thank MIUR, Milan University (National Project
‘‘Stereoselezione in Sintesi Organica. Metodologie e
Applicazioni’’), FIRB Project RBNE015J4Z and the
CNR for their financial support. We also thank Prof.
Rosangela Marchelli and her research group for their
helpful discussion.
5.14. N-Cbz cleavage in 1 to give 13
At room temperature Pd/C (10%) 15 mg and
HCO2NH4 (0.35 mmol, 2.6 eq) were added to a solu-
tion of 1 (0.14 mmol, 1 eq) in 12 ml of DMF/MeOH,
1:1. The reaction was stirred for 2 h, then filtered
over a pad of celite and the solvent evaporated.
The residue was dissolved in CH2Cl2 (15 ml) and
washed with brine (10 ml), the organic phase was
dried over Na2SO4 and evaporated. The crude prod-
uct was taken up with CH2Cl2 (3 ml) and the yellow
solid was filtered, washed with CH2Cl2 (3 · 2 ml) and
dried (80%).
References
[1] (a) Peter E. Nielsen, Peptide Nucleic Acids: Protocols and
Applications, second ed., Horizon Bioscience, Wymondham, UK,
2004;
(b) E. Uhlmann, A. Peyman, G. Breipohl, W.W. David, Angew.
Chem. Int. Ed. 37 (1998) 2796.
[2] (a) A. Jacob, O. Brandt, S. Wuertz, A. Stephan, M. Schnolzer,
J.D. Hoheisel, in: Peter E. Nielsen (Ed.), Peptide Nucleic Acids,
second ed., Horizon Bioscience, Wymondham, UK, 2004, pp.
261–279;
(
D
,
L
1
)-13: orange powder, m.p. 221–225 ꢁC (pen-
tane); H NMR (DMSO, d): two rotamers A and B
are present, A > B: 1.77 (s, 3H, CH3, Thym, A);
1.73 (s, 3H, CH3 Thym, B) 2.6–3.6 (m, 9H,
CH + CH2, A + B); 4.5–4.7 (m, 9H, CH + CH2,
A + B); 4.19 (bs, 4H, CH, Fc, A + B); 4.22 (bs,
10H, CH, Fc, A + B); 4.33 (bs, 4H, Fc, A + B); 4.78
(s, 2H, CH2Fc, A); 4.81 (s, 2H, CH2Fc, B); 6.66 (s,
1H, CH@, B); 6.88 (d, 2H, PhO, J = 8.5 Hz, A);
6.97 (d, 2H, PhO, J = 8.5 Hz, B); 7.07 (d, 2H, PhO,
J = 8.5 Hz, A); 7.23 (d, 2H, PhO, J = 8.5 Hz); 7.28
(s, 1H, CH@, A); 8.10 (s, 1H, NH, A); 8.14 (s, 1H,
NH, B); 11.25 (s, 2H, NH Thym, A + B).13C NMR
(DMSO, d): (two rotamers): 12.35, 35.30, 36.07,
36.50, 48.20, 48.65, 56.94, 59.1 66.45, 66.61 68.74,
68.9, 69.88, 82.4, 82.6, 108.5, 108.6, 114.8, 115.2
129.4, 129.5, 129.9, 131.3, 142.04, 142.61, 151.32,
151.5, 157.7, 158.0, 164.8, 164.9, 165.97, 166.06,
167.8, 168.3. MS (EI) m/z 570 (M+); HRMS (ESI)
for C29H30FeN4O5 found: 568.16060. IR (nujol, m
cmꢀ1) 1660 (CONH).
(b) J. Wang, Bioesensors & Bioelectronics 13 (1998) 757.
[3] (a) G. Jaouen, R.H. Fish, J. Organomet. Chem. 668 (1–2)
(2003);
(b) W. Beck, K. Severin, Chemie in Unserer Zeit 36 (6) (2002)
356;
(c) N. Metzler-Nolte, Angew. Chem. Int. Ed. 40 (2001)
1040;
(d) W. Beck, H. Dialer, W. Steglich, Zeits. Naturfors. B:
Chemical Sciences 56 (10) (2001) 1084.
[4] (a) N. Fischer-Durand, M. Salmain, B. Rudolf, A. Vessieres, J.
Zakrzewski, G. Jaouen, ChemBioChem 5 (2004) 519–525, and
references cited therein;
(b) M. Salmain, G. Jaouen, Comptes Rendus Chimie 6 (2003)
249;
(c) N. Fischer-Durand, A. Vessieres, J.M. Heldt, F. le Bideau, G.
Jaouen, J. Organomet. Chem. 668 (1–2) (2003) 59;
(d) M. Hromadova, M. Salmain, R. Sokolova, L. Pospisil, G.
Jaouen, J. Organomet. Chem. 668 (1–2) (2003) 17.
[5] (a) C. Baldoli, C. Giannini, S. Maiorana, E. Licandro, G.
Zinzalla, Synlett (2004) 1044;
(b) C. Baldoli, S. Maiorana, E. Licandro, D. Perdicchia, G.
Zinzalla, Organic Lett. 4 (2002) 4341.
[6] S. Maiorana, E. Licandro, D. Perdicchia, C. Baldoli, B. Vandoni,
C. Giannini, M. Salmain, J. Mol. Cat. A: Chemical 204–205
(2003) 165.
[7] F. Patolsky, Y. Weizmann, I. Wilner, J. Am. Chem. Soc. 124
(2002) 770.
6. Electrochemical studies
´
[8] (a) P. De-los-Santos-Alvarez, M.J. Lobo-Castan˜on, A.J. Mir-
´
The experiments were performed on carefully deaer-
ated solutions in a cell thermostated at 298 K, by an
´
anda-Ordieres, P. Tun˜on-Blanco, Anal. Bioanal. Chem. 378
(2004) 104;
(b) S. Takenaka, Bull. Chem. Soc. Jpn. 74 (2001) 217;
(c) J. Wang, Nucl. Acid Res. 28 (2000) 3011.
Autolab
PGSTAT
12
potentiostat/galvanostat
(EcoChemie, The Netherlands) run by a PC with
GPES software and equipped with a Metrohm 663
VA Stand including a Pt or GC rotating disk working
electrode, a carbon counterꢀelectrode, and a saturated
[9] N. Metzler-Nolte, J.C. Verheijen, G. van der Marel, J.H. van
Boom, Bioconjugate Chem. 11 (2000) 741.
[10] N.F. Campbell, J.N. Keen, Abstract Papers of 227th ACS
National Meeting, Anaheim, CA, 2004, ANYL- 074.