base-to-apex edge but with parallel basal planes (Type-I), (b)
square pyramids sharing one base-to-apex edge with the two
bases nearly perpendicular to one another (Type-II) and (c) square
pyramids sharing a basal edge with coplanar basal planes (Type-
III). Complex 1 belongs to the Type-I class of compounds and in
this case the extent of this magnetic coupling is decided by the small
structural deviations from the ideal square Cu2Cl2 core. Recently,
Mrozinski and co-workers26 established a theoretical correlation
between the magnetic coupling and both parameters (a and R)
showing that for small a values and short Cu–Cl distances the
magnetic coupling is ferromagnetic. These structural parameters
2 (a) X.-M. Chen and M.-L. Tong, Acc. Chem. Res., 2007, 40, 162; (b) X.-
M. Zhang, Coord. Chem. Rev., 2005, 249, 1201; (c) H. Zhao, Z.-R. Qu,
H.-Y. Ye and R.-G. Xiong, Chem. Soc. Rev., 2008, 37, 84.
3 (a) B. A. Roberts and C. R. Strauss, Acc. Chem. Res., 2005, 38, 653;
(b) A. Hoz, A. de D´ıaz-Ortiz and A. Moreno, Chem. Soc. Rev., 2005,
34, 164.
4 (a) P. Amo-Ochoa, G. Givaja, P. J. S. Miguel, O. Castillo and F. Zamora,
Inorg. Chem. Commun., 2007, 10, 921 , and references therein cited;
(b) X. Wang, Y. Zhang, H. Huang, J. Zhang and X-M. Chen, Cryst.
Growth Des., 2008, 8, 4559; (c) S. Delgado, P. J. S. Miguel, J. L. Priego,
R. Jime´nez-Aparicio, C. Go´mez-Garc´ıa and F. Zamora, Inorg. Chem.,
2008, 47, 9128; (d) S. Delgado, A Santana, O. Castillo and F. Zamora,
Dalton Trans., 2010, 39, 2280.
5 (a) P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999, 99, 3625;
(b) P. C. Ford and A. Vogler, Acc. Chem. Res., 1993, 26, 220; (c) E. S.
Raper, Coord. Chem. Rev., 1996, 153, 199; (d) E. S. Raper, Coord. Chem.
Rev., 1994, 129, 91; (e) E. S. Raper, Coord. Chem. Rev., 1997, 165, 475;
(f) J. A. Garcia-Vazquez, J. Romero and A. Sousa, Coord. Chem. Rev.,
1999, 193–195, 691; (g) P. D. Akrivos, Coord. Chem. Rev., 2001, 213,
181; (h) T. S. Lobana, R. Sharma, E. Bermejo and A. Castineiras, Inorg.
Chem., 2003, 42, 7728.
in compound 1 (90.1◦ and 2.58 A), that predict a moderately
˚
strong ferromagnetic coupling, are very close to those reported
for the [Cu2Cl2(Mebta)6](ClO4)2 (Mebta = 1-methylbenzotriazole)
compound, which has a similar J value of 10.4 cm-1 (92.9◦ and
26
˚
2.55 A).
6 (a) S. M. Humphrey, R. A. Mole, J. M. Rawson and P. T. Wood, Dalton
Trans., 2004, 1670; (b) P. L. Caradoc-Davies and L. R. Hanton, Dalton
Trans., 2003, 1754; (c) R. Horikoshi, T. Mochida and H. Moriyama,
Inorg. Chem., 2002, 41, 3017; (d) Ch. Huang, S. Gou, H. Zhu and W.
Huang, Inorg. Chem., 2007, 46, 5537.
7 (a) E. S. Raper, Coord. Chem. Rev., 1985, 61, 115; (b) S. Oae and
T. Okuyama (ed.), Organic Sulfur Chemistry: Biological Aspects, CRC
Press, Boca Raton, 1992.
8 (a) L. Han, X. Bu, Q. Zhang and P. Feng, Inorg. Chem., 2006, 45, 5736;
(b) J. Wang, Y.-H. Zhang, H.-X. Li, Z.-J. Lin and M. L. Tong, Cryst.
Growth Des., 2007, 7, 2352; (c) J. Wang, S.-L. Zheng, H.-X. Li, S. Hu,
Y. Zhang and M. L. Tong, Inorg. Chem., 2007, 46, 795.
Conclusions
In summary, the results shown here are an interesting example
of the synthetic potential of the reactions carried out un-
der solvothermal and solvothermal-microwave conditions using
organosulfur ligands in the presence of redox active metal ions.
An unprecedented in situ multiple bond cleavage of S–S, S–
C(sp2) and C–N in the pym2S2 ligand is produced by reaction
with CuCl2. In fact, the C–N bond cleavage for these types of
organosulfur ligands is reported here for the first time. This
process has enabled a novel organic compound, 2-(pyrimidin-
2-ylamino)-1,3-thiazole-4-carbaldehyde to be isolated. Moreover,
the in situ formed ligand coordinates to Cu(II) ion leading to the
formation of the dimetallic complex [CuII(m-Cl)(Cl)L]2 (L = 2-
(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde). In addition,
the analogous reaction carried out under solvothermal microwave
conditions leads to the subsequent Cu(II) dimetallic complex and
to the {9[Cu(pym2S3)(m-Cl)(Cl)]2·[Cu(pym2S2)(m-Cl)(Cl)]2} com-
pound. Preliminary results, suggest that the analogous reactions
carried out with Ni(II), instead of Cu(II), proceed only through the
S–S bond breakage and subsequent rearrangement leading to the
complex [Ni2Cl4(pym2S)(pym2S3)].
9 R Leino and J.-E. Lonnqvist, Tetrahedron Lett., 2004, 45, 8489.
10 F. Z. Otwinowsky and W. Minor, Methods Enzymol., 1997, 276, 307.
11 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990,
46, 467.
12 G. M. Sheldrick, SHELXTL-PLUS (VMS), Siemens Analytical
X-Ray Instruments, Madison, WI, 1990.
13 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refine-
ment, University of Goettingen, Germany, 1993.
14 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
15 A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn and G. C. Verschoor,
J. Chem. Soc., Dalton Trans., 1984, 1349.
16 (a) X.-H. Bu, M. Du, Z.-L. Shang, L. Zhang, Q.-H. Zhao, R.-H. Zhang
and M. Shionoya, Eur. J. Inorg. Chem., 2001, 1551; (b) F. Tuna, L.
Patron, Y. Journaux, M. Andruh, W. Plass and J.-C. Trombe, J. Chem.
Soc., Dalton Trans., 1999, 539; (c) S. C. Lee and R. H. Holm, Inorg.
Chem., 1993, 32, 4745.
17 F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 31.
18 J.-K. Cheng, Y.-B. Chen, L. Wu, J. Zhang, Y.-H. Wen, Z. Li and Y.-G.
Yao, Inorg. Chem., 2005, 44, 3386.
19 We postulate that a nucleophylic attack by H2O and in situ cyclization
could generate a hydroxy intermediate which undergoes dehydrogena-
tive oxidation.
Acknowledgements
Financial support by the MEC (projects no. MAT2007-66476-
C02-02, MAT2008-05690/MAT, FP6-029192) and Comunidad de
Madrid (project S-2009-MAT-1467) is gratefully acknowledged.
We thank Prof. T. Torres for helpful discussions.
20 Preliminary crystallographic data for [Ni2Cl4(pymS)(pymS3)] (obtained
from a twinned specimen): monoclinic, space group P21/◦n, a =
˚
˚
˚
8.923(4) A, b = 25.271(7) A, c = 10.998(5) A, b = 102.3(6) , V =
˚
2423(6) A.
21 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380.
22 O. Kahn, Molecular Magnetism, VCH Publishers, 1993.
23 S. G. N. Roundhill, D. M. Roundhill, D. R. Bloomquist, C. Landee,
R. D. Willett, D. M. Dooley and H. B. Gray, Inorg. Chem., 1979, 18,
831.
Notes and references
1 (a) J. Y. Lu, Coord. Chem. Rev., 2003, 246, 327 and references therein;
(b) J. P. Zhang, S. L. Zheng, X. C. Huang and X. M. Chen, Angew.
Chem., Int. Ed., 2004, 43, 206; (c) X. M. Zhang, M. L. Tong and X. M.
Chen, Angew. Chem., Int. Ed., 2002, 114, 1071; (d) X. M. Zhang, M. L.
Tong, M. L. Gong, H. K. Lee, L. Luo, K. F. Li, Y. X. Tong and X. M.
Chen, Chem.–Eur. J., 2002, 8, 3187; (e) J. Tao, Y. Zhang, M. L. Tong,
X. M. Chen, T. Yuen, C. L. Lin, X. Y. Huang and J. Li, Chem. Commun.,
2002, 1342; (f) M. N. Bochkarev, G. V. Khoroshenkov, H. Schumann
and S. Dechert, J. Am. Chem. Soc., 2003, 125, 2894.
24 (a) W. E. Marsh, W. E. Hatfield and D. J. Hodgson, Inorg. Chem.,
1982, 21, 2679; (b) W. E. Marsh, K. C. Patel, W. E. Hatfield and D. J.
Hodgson, Inorg. Chem., 1983, 22, 511.
25 M. Rodr´ıguez, A. Llobet and M. Corbella, Polyhedron, 2000, 19, 2483.
26 K. Skorda, T. C. Stamatatos, A. P. Vafiadis, A. T. Lithoxoidou, A. Terzis,
S. P. Perlepes, J. Mrozinski, C. P. Raptopoulou, J. C. Plakatouras and
E. G. Bakalbassis, Inorg. Chim. Acta, 2005, 358, 565.
27 M. Grove, J. Sletten, M. Julve and F. Lloret, J. Chem. Soc., Dalton
Trans., 2001, 2487.
852 | Dalton Trans., 2011, 40, 847–852
This journal is
The Royal Society of Chemistry 2011
©