F. Cuenca et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5109–5113
5113
8. Hahn, W. C.; Stewart, S. A.; Brooks, M. W.; York, S. G.; Eaton, E.; Kurachi, A.;
Beijersbergen, R. L.; Knoll, J. H. M.; Meyerson, M.; Weinberg, R. A. Nat. Med.
1999, 5, 1164.
9. Shay, J. W.; Wright, W. E. Nat. Rev. Drug Disc. 2006, 5, 577.
10. Brassart, B.; Gomez, D.; De Cian, A.; Paterski, R.; Montagnac, A.; Qui, K. H.;
Temime-Smaali, N.; Trentesaux, C.; Mergny, J.-L.; Gueritte, F.; Riou, J.-F. Mol.
Pharmacol. 2007, 72, 631.
11. Gunaratnam, M.; Greciano, O.; Martins, C.; Reszka, A. P.; Schultes, C. M.;
Morjani, H.; Riou, J. F.; Neidle, S. Biochem. Pharmacol. 2007, 74, 679.
12. De Cian, A.; Lacroix, L.; Douarre, C.; Temime-Smaali, N.; Trentesaux, C.; Riou, J.;
Mergny, J. Biochimie 2008, 90, 131.
13. Parkinson, G. N.; Lee, M. P.; Neidle, S. Nature 2002, 417, 876.
14. Campbell, N. H.; Parkinson, G. N.; Reszka, A. P.; Neidle, S. J. Am. Chem. Soc. 2008,
130, 6722.
15. Parkinson, G. N.; Cuenca, F.; Neidle, S. J. Mol. Biol. 2008, 381, 1145.
16. Harrison, R. J.; Reszka, A. P.; Haider, S. M.; Romagnoli, B.; Morrell, J.; Read, M.
A.; Gowan, S. M.; Incles, C. M.; Kelland, L. R.; Neidle, S. Bioorg. Med. Chem. Lett.
2004, 14, 5845.
17. Rossetti, L.; Franceschin, M.; Schirripa, S.; Bianco, A.; Ortaggi, G.; Savino, M.
Bioorg. Med. Chem. Lett. 2005, 15, 413.
18. Perry, P. J.; Reszka, A. P.; Wood, A. A.; Read, M. A.; Gowan, S. M.;
Dosanjh, H. S.; Trent, J. O.; Jenkins, T. C.; Kelland, L. R.; Neidle, S. J. Med.
Chem. 1998, 41, 4873.
Figure 4. Micrograph of A549 cells after treatment with compound 24 and after
staining for senescence. Red arrows indicate cells with the characteristic blue colour
associated to senescent cells.
19. Rewcastle, G. W.; Denny, W. A. Synthesis 1985, 2, 217.
20. Wakelin, L. P.; Bu, X.; Eleftheriou, A.; Parmar, A.; Hayek, C.; Stewart, B. W. J.
Med. Chem. 2003, 46, 5790.
both the TRAP-LIG29 and direct telomerase assays30 did not show
any activity for any of the 4,5-acridones.31
21. Acylation of either 3- or 4-nitro aniline used the correspondent chloroacyl
chloride as a solvent under mild heating for 8–16 h. For the substitution
reaction the chloro compounds were treated with the different amines as
solvent, except for dimethylamine when a 2 M solution in THF was used, with
mild heating for 24 h. The nitro compounds were reduced with ammonium
formate and Pd/C in ethanol in a microwave with very short reaction times (2–
3 min) at 120ꢀC to give the targeted anilines. When necessary, an extra step
was performed for carbonyl group reduction with a Me2SꢀBH3 complex in THF,
prior to the reaction with the amines.
Inhibition of cell proliferation in long-term culture experiments,
together with evidence of cellular senescence, is suggestive of a
telomere-targeted mechanism of cancer cell toxicity, which is sup-
ported by the high G4 affinity of some (but not all) of the 4,5-acri-
done compounds. The lack of telomerase inhibition and of
telomere shortening, demonstrates that the catalytic function of
telomerase is not involved, although telomerase uncapping from
the 30 end of telomeres may be a contributor to the observed can-
cer cell selectivity. We cannot also discount other mechanisms of
action, including the involvement of promoter G4s since these
compounds are not specific for telomeric G4s.31 The properties of
these 4,5-acridones are in striking contrast with a recently- re-
ported series of 4,5-di-substituted acridines (with amidoalkylami-
no side chains).32 These show low G4 stabilization ability, with
22. Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1996, 118, 6141.
23. Synthesis and analytical data for compound 9. Information on other compounds
is provided in the Supplementary data.
N4,N5-Bis(4-(3-(pyrrolidin-1-yl)propanamido) phenyl)-9,10-dihydro-9-oxoac-
ridine-4,5-dicarboxamide (9): A solution of 1 (20 mg, 0.071 mmol), PyBOP
(3 equiv, 0.213 mmol, 111 mg) and N-(4-aminophenyl)-3-(pyrrolidin-1-
yl)propanamide (4 equiv, 1.818 mmol, 69 mg) in a mixture of anhydrous DMF
(3 ml) and acetonitrile (1 ml) under N2 atmosphere was stirred at rt for 24 h.
EtOAc (30 ml) was added and the yellow solid formed was filtered, washed with
EtOAc (3 ꢁ 5 ml) and ether (3 ꢁ 5 ml). Yield: 42.8 mg, 84.5%. Analytical data:
decomp. at 250 °C; IR
l
(cmꢂ1) 3283, 1644, 1610, 1510, 1433, 1406, 1311, 1238,
1022, 832; 1H NMR (DMSO-d6) d: 1.89 (m, 8H), 2.79 (t, 4H, J = 6.9 Hz), 3.10 (m,
8H), 3.33 (m, 4H), 7.46 (t, 2H, J = 7.7 Hz), 7.61 (d, 4H, J = 9.1 Hz), 7.67 (d, 4H,
J = 9.1 Hz), 8.34 (dd, 2H, J = 7.5, 1.4 Hz), 8.50 (dd, 2H, J = 8.1, 1.3 Hz), 10.29 (s, 2H),
10.62 (s, 2H), 13.26 (s, 1H); 13C NMR (DMSO-d6) d: 23.02 (4 ꢁ CH2), 35.52
(2 ꢁ CH2), 51.28 (2 ꢁ CH2), 53.28 (2 ꢁ CH2), 119.19 (4 ꢁ CH), 120.58 (2 ꢁ C),
120.63 (2 ꢁ C), 121.06 (2 ꢁ C), 121.29 (4 ꢁ CH), 129.78 (2 ꢁ CH), 133.66
(2 ꢁ CH), 134.05 (2 ꢁ CH), 135.47 (2 ꢁ C), 139.25 (2 ꢁ C), 165.56 (2 ꢁ C@O),
169.60 (2 ꢁ C@O), 176.19 (C@O); HRMS (ESI+) calcd C41H44N7O5 [M+H]+
714.3398. Found: 714.3395.
D
Tm(1 lM) values in the range 0–3 °C, and with some compounds
having potent in vitro telomerase inhibitory activity.
Acknowledgements
We thank CRUK and EU FP6 (Molecular Cancer Medicine LSHC-
CT-2004-502943) for support, Jean-Louis Mergny for useful discus-
sions and Joachim Lingner for a kind gift of supertelomerase
extracts.
24. The FRET DNA melting assay was performed as described previously (Schultes,
C. M.; Guyen, B.; Cuesta, J.; Neidle, S. Bioorg. Med. Chem. Lett. 2004, 14, 4347).
The full protocol is given in the Supplementary data. The tagged DNA
sequences used were: 50-FAM-d(GGG[TTAGGG]3)-TAMRA-30 for the G4 and
50-FAM-dTATAGCTATA-HEG-TATAGCTATA-TAMRA-30 (HEG linker: [(–CH2–
CH2–O–)6]) for the duplex experiment.
Supplementary data
25. See Supplementary data for more information.
Supplementary data associated with this article can be found, in
26. Leonetti, C.; Amodei, S.; D’Angelo, C.; Rizzo, A.; Benassi, B.; Antonelli, A.; Elli, R.;
Stevens, M.; D’Incalci, M.; Zupi, G.; Biroccio, A. Mol. Pharmacol. 2004, 8, 1063.
27. D’adda di Fagagna, F. D.; Reaper, P. M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; von
Zglinicki, T.; Saretzki, G.; Carter, N. P.; Jackson, S. P. Nature 2003, 426, 194.
28. 1 ꢁ 105 cells per well were cultivated in 2 ml of medium plus compound in 96-
References and notes
well plates. After 24 h the cells were stained for senescence with
a b-
1. McEachern, M. J.; Krauskopf, A.; Blackburn, E. H. Ann. Rev. Genetics 2000, 34,
331.
galactosidase kit (Cell Signalling Technology). Blue stained senescent cells
were quantified by microscopy.
2. Olovnikov, A. M. J. Theor. Biol. 1973, 41, 181.
3. Hayflick, L. Exp. Cell Res. 1965, 37, 614.
29. Reed, J.; Gunaratnam, M.; Beltran, M.; Reszka, A. P.; Vilar, R.; Neidle, S. Anal.
Biochem. 2008, 380, 99.
4. Shay, J. W.; Wright, W. E. Carcinogenesis 2005, 26, 867.
5. Wright, W. E.; Shay, J. W. Exp. Gerontol. 1992, 27, 383.
6. Hahn, W. C.; Counter, C. M.; Lundberg, A. S.; Beijersbergen, R. L.; Brooks, M. W.;
Weinberg, R. A. Nature 1999, 400, 464.
7. Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P. L. C.;
Coviello, G. M.; Wright, W. E.; Shay, J. W. Science 1994, 266, 2011.
30. De Cian, A.; Cristofari, G.; Reichenbach, P.; De Lemos, E.; Mondchaud, D.;
Teulade-Fichou, M. P.; Shin-Ya, K.; Lacroix, L.; Lingner, J.; Mergny, J.-L. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 17347.
31. Cuenca Alonso, F. PhD thesis, School of Pharmacy, University of London, 2008.
32. Laronze-Cochard, M.; Kim, Y.-M.; Brassart, B.; Riou, J.-F.; Laronze, J.-Y.; Sapi, J.