10536 Nucleic Acids Research, 2014, Vol. 42, No. 16
14. Shrivastav,N., Li,D. and Essigmann,J.M. (2010) Chemical biology of
mutagenesis and DNA repair: cellular responses to DNA alkylation.
Carcinogenesis, 31, 59–70.
SUPPLEMENTARY DATA
15. Den Engelse,L., De Graaf,A., De Brij,R.J. and Menkveld,G.J. (1987)
O2- and O4-ethylthymine and the ethylphosphotriester dTp(Et)dT are
highly persistent DNA modifications in slowly dividing tissues of the
ethylnitrosourea-treated rat. Carcinogenesis, 8, 751–757.
16. Brent,T.P., Dolan,M.E., Fraenkel-Conrat,H., Hall,J., Karran,P.,
Laval,L., Margison,G.P., Montesano,R., Pegg,A.E., Potter,P.M. et al.
(1988) Repair of O-alkylpyrimidines in mammalian cells: a present
consensus. Proc. Natl. Acad. Sci. USA, 85, 1759–1762.
17. Bronstein,S.M., Skopek,T.R. and Swenberg,J.A. (1992) Efficient
repair of O6-ethylguanine, but not O4-ethylthymine or
O2-ethylthymine, is dependent upon O6-alkylguanine-DNA
alkyltransferase and nucleotide excision repair activities in human
cells. Cancer Res., 52, 2008–2011.
18. Chen,H.J., Wang,Y.C. and Lin,W.P. (2012) Analysis of ethylated
thymidine adducts in human leukocyte DNA by stable isotope
dilution nanoflow liquid chromatography-nanospray ionization
tandem mass spectrometry. Anal. Chem., 84, 2521–2527.
19. Jasti,V.P., Spratt,T.E. and Basu,A.K. (2011) Tobacco-specific
nitrosamine-derived O2-alkylthymidines are potent mutagenic lesions
in SOS-induced Escherichia coli. Chem. Res. Toxicol., 24, 1833–1835.
20. Zhai,Q., Wang,P. and Wang,Y. (2014) Cytotoxic and mutagenic
properties of regioisomeric O2-, N3- and O4-ethylthymidines in
bacterial cells. Carcinogenesis, doi:10.1093/carcin/bgu1085.
21. Xu,Y.Z. and Swann,P.F. (1994) Oligodeoxynucleotides containing
O2-alkylthymine––synthesis and characterization. Tetrahedron Lett.,
35, 303–306.
22. Reist,E.J., Goodman,L. and Benitez,A. (1964) Synthesis of some
5ꢁ-thiopentofuranosylpyrimidines. J. Org. Chem., 29, 554–558.
23. Delaney,J.C. and Essigmann,J.M. (2006) Assays for determining
lesion bypass efficiency and mutagenicity of site-specific DNA lesions
in vivo. Methods Enzymol., 408, 1–15.
24. Neeley,W.L., Delaney,S., Alekseyev,Y.O., Jarosz,D.F., Delaney,J.C.,
Walker,G.C. and Essigmann,J.M. (2007) DNA polymerase V allows
bypass of toxic guanine oxidation products in vivo. J. Biol. Chem.,
282, 12741–12748.
25. Delaney,J.C. and Essigmann,J.M. (2004) Mutagenesis, genotoxicity,
and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine,
and 3-methylthymine in alkB Escherichia coli. Proc. Natl. Acad. Sci.
U.S.A., 101, 14051–14056.
26. Yuan,B., Cao,H., Jiang,Y., Hong,H. and Wang,Y. (2008) Efficient
and accurate bypass of N2-(1-carboxyethyl)-2ꢁ-deoxyguanosine by
DinB DNA polymerase in vitro and in vivo. Proc. Natl. Acad. Sci.
U.S.A., 105, 8679–8684.
ACKNOWLEDGMENTS
The authors would like to thank Prof. Graham C. Walker
for providing the E. coli strains and Prof. John M. Essig-
mann for providing the initial M13 vector.
FUNDING
National Institutes of Health (NIH) [ES025121 to Y.W.].
Funding for open access charge: NIH [R01 ES025121].
Conflict of interest statement. None declared.
REFERENCES
1. Friedberg,E.C., Walker,G.C., Siede,W., Wood,R.D., Schultz,R.A.
and Ellenberger,T. (2006) DNA Repair and Mutagenesis. ASM Press,
Washington, D.C.
2. Singer,B. and Grunberger,D. (1983) Molecular Biology of Mutagens
and Carcinogens. Plenum Press, New York.
3. Sedgwick,B., Bates,P.A., Paik,J., Jacobs,S.C. and Lindahl,T. (2007)
Repair of alkylated DNA: recent advances. DNA Repair, 6, 429–442.
4. Helleday,T., Petermann,E., Lundin,C., Hodgson,B. and
Sharma,R.A. (2008) DNA repair pathways as targets for cancer
therapy. Nat. Rev. Cancer, 8, 193–204.
5. Gerson,S.L. (2004) MGMT: its role in cancer aetiology and cancer
therapeutics. Nat. Rev. Cancer, 4, 296–307.
6. Wang,L., Spratt,T.E., Liu,X.K., Hecht,S.S., Pegg,A.E. and
Peterson,L.A. (1997) Pyridyloxobutyl adduct
O6-[4-oxo-4-(3-pyridyl)butyl]guanine is present in
4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone-treated
DNA and is a substrate for O6-alkylguanine-DNA alkyltransferase.
Chem. Res. Toxicol., 10, 562–567.
7. Wang,M., Cheng,G., Sturla,S.J., Shi,Y., McIntee,E.J., Villalta,P.W.,
Upadhyaya,P. and Hecht,S.S. (2003) Identification of adducts formed
by pyridyloxobutylation of deoxyguanosine and DNA by
4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone, a chemically
activated form of tobacco specific carcinogens. Chem. Res. Toxicol.,
16, 616–626.
8. Upadhyaya,P., Sturla,S.J., Tretyakova,N., Ziegel,R., Villalta,P.W.,
Wang,M. and Hecht,S.S. (2003) Identification of adducts produced by
the reaction of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol
with deoxyguanosine and DNA. Chem. Res. Toxicol., 16, 180–190.
9. Hecht,S.S., Villalta,P.W., Sturla,S.J., Cheng,G., Yu,N., Upadhyaya,P.
and Wang,M. (2004) Identification of O2-substituted pyrimidine
adducts formed in reactions of
4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone and
4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol with DNA.
Chem. Res. Toxicol., 17, 588–597.
27. Andersen,N., Wang,J., Wang,P., Jiang,Y. and Wang,Y. (2012) In vitro
replication studies on O2-methylthymidine and O4-methylthymidine.
Chem. Res. Toxicol., 25, 2523–2531.
28. Napolitano,R., Janel-Bintz,R., Wagner,J. and Fuchs,R.P. (2000) All
three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are
involved in induced mutagenesis. EMBO J., 19, 6259–6265.
29. Shen,X., Sayer,J.M., Kroth,H., Ponten,I., O’Donnell,M.,
Woodgate,R., Jerina,D.M. and Goodman,M.F. (2002) Efficiency and
accuracy of SOS-induced DNA polymerases replicating
benzo[a]pyrene-7,8-diol 9,10-epoxide A and G adducts. J. Biol.
Chem., 277, 5265–5274.
30. Seo,K.Y., Nagalingam,A., Miri,S., Yin,J., Chandani,S.,
Kolbanovskiy,A., Shastry,A. and Loechler,E.L. (2006) Mirror image
stereoisomers of the major benzo[a]pyrene N2-dG adduct are
bypassed by different lesion-bypass DNA polymerases in E. coli.
DNA Repair, 5, 515–522.
31. Jarosz,D.F., Godoy,V.G., Delaney,J.C., Essigmann,J.M. and
Walker,G.C. (2006) A single amino acid governs enhanced activity of
DinB DNA polymerases on damaged templates. Nature, 439,
225–228.
32. Suzuki,N., Ohashi,E., Kolbanovskiy,A., Geacintov,N.E.,
Grollman,A.P., Ohmori,H. and Shibutani,S. (2002) Translesion
synthesis by human DNA polymerase on a DNA template
containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N2-BPDE
(7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene).
Biochemistry, 41, 6100–6106.
10. Lao,Y., Yu,N., Kassie,F., Villalta,P.W. and Hecht,S.S. (2007) Analysis
of pyridyloxobutyl DNA adducts in F344 rats chronically treated with
(R)- and (S)-N’-nitrosonornicotine. Chem. Res. Toxicol., 20, 246–256.
11. Lao,Y., Yu,N., Kassie,F., Villalta,P.W. and Hecht,S.S. (2007)
Formation and accumulation of pyridyloxobutyl DNA adducts in
F344 rats chronically treated with
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of
its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem.
Res. Toxicol., 20, 235–245.
12. Upadhyaya,P., Kalscheuer,S., Hochalter,J.B., Villalta,P.W. and
Hecht,S.S. (2008) Quantitation of pyridylhydroxybutyl-DNA adducts
in liver and lung of F-344 rats treated with
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and enantiomers of
its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem.
Res. Toxicol., 21, 1468–1476.
13. Singer,B. (1986) O-alkyl pyrimidines in mutagenesis and
carcinogenesis: occurrence and significance. Cancer Res., 46,
4879–4885.
33. Zhang,Y., Yuan,F., Wu,X., Wang,M., Rechkoblit,O., Taylor,J.S.,
Geacintov,N.E. and Wang,Z. (2000) Error-free and error-prone lesion