Chemistry Letters Vol.33, No.3 (2004)
207
¯
1554 (1991). c) S. Toyota and M. Oki, Bull. Chem. Soc.
Jpn., 65, 1832 (1992). d) S. Toyota, T. Futawaka, M.
¯
Asakura, H. Ikeda, and M. Oki, Organometallics, 17, 4155
+40
(1998).
T. Murafuji, K. Kurotobi, N. Nakamura, and Y. Sugihara,
Curr. Org. Chem., 6, 1469 (2002) and references therein.
(+)-1a
3
4
+20
0
a) E. Vedejs, R. W. Chapman, M. Muller, and D. R. Powell, J.
¨
Am. Chem. Soc., 122, 3047 (2000). b) E. Vedejs, S. C. Fields,
R. Hayashi, S. R. Hitchcock, D. R. Powell, and M. R.
Schrimpf, J. Am. Chem. Soc., 121, 2460 (1999).
a) H. I. Beltran, L. S. Zamudio-Rivera, T. Mancilla, R.
Santillan, and N. Farfan, J. Organomet. Chem., 657, 194
(2002). b) A. R. Rico, M. Tlahuextl, A. Flores-Parra, and
R. Contreras, J. Organomet. Chem., 581, 122 (1999).
P. Vedrenne, V. Le Guen, L. Toupet, T. Le Gall, and C.
Mioskowski, J. Am. Chem. Soc., 121, 1090 (1999).
C. S. Shiner, C. M. Garner, and R. C. Haltiwanger, J. Am.
Chem. Soc., 107, 7167 (1985).
ε
0
5
–20
(–)-1a
-10
–40
6
7
8
9
210
220
260
230
200
220
240
λ
/ nm
D. J. Owen, D. VenDerveer, and G. B. Schuster, J. Am. Chem.
Soc., 120, 1705 (1998).
T. Imamoto and H. Morishita, J. Am. Chem. Soc., 122, 6329
(2000).
Figure 2. CD spectra of (+)- and (ꢂ)-1a in hexane. Inset spec-
tra are changes during the racemization of (ꢂ)-1a upon heating
for 0, 70, 300, 600, and 1080 min at 69 ꢄC.
nals.
10 L. Charoy, A. Valleix, L. Toupet, T. Le Gall, P. P. van
Chuong, and C. Mioskowski, Chem. Commun., 2000, 2275.
11 1a: Yield 66%; mp 140–142 ꢄC; Found: C, 55.89; H, 4.78; N,
3.97% (Calcd for C18H17BF5NO2: C, 56.13; H, 4.45; N,
3.64%); 1H NMR (CDCl3) ꢀ ¼ 2:22 (3H, s), 2.89 (3H, s),
3.95 and 4.46 (2H, ABq, JAB ¼ 13:2 Hz), 7.19 (1H, d, J ¼
7:2 Hz), 7.28–7.32 (5H, m), 7.41 (2H, m), 7.78 (1H, d, J ¼
7:2 Hz); 11B NMR (CDCl3) ꢀ ¼ 8:8 (half-band width,
240 Hz). Enantiomers were resolved by chiral HPLC (Daicel,
Chiralpak AD) with hexane:2-propanol (50:1) as eluent.
As proposed for other borane–amine complexes,2a,b the
mechanism of racemization can be deduced from the dissocia-
tion of the N–B bond, the rotation about the C–B bond by
180ꢄ, and the recombination of the coordination bond, where
the first step is rate-determining (Scheme 1). Thus, the rates of
racemization mainly depend on the strength of the N–B coordi-
nation bonds. The above kinetic measurements revealed that the
coordination bonds in 1 are stronger than those in 4 (ca.
75 kJ molꢂ1), contrary to the small THC in the former; namely,
perfluoroacyloxy groups as well as phenyl groups tend to en-
hance the Lewis acidity of boron atoms with a small structural
change from trigonal to tetrahedral geometry. The difference
in barrier heights between 1a and 1b is attributed to the inductive
effect of extra fluorine atoms in the former, which increases the
Lewis acidity of the boron atom.15 The use of a –OCOC2F5
group not only enhances the barrier to racemization but also in-
creases the chemical stability and the solubility, greatly facilitat-
ing the enantiomeric resolution.
In summary, we have successfully resolved enantiomers
of the intramolecular amine–borane complexes with a chiral
boron center by taking advantage of the DMP system with a
–OCOC2F5 ligand. To the best of our knowledge, this compound
is the first example of an enantiopure borane complex with four
nonhydrogen ligands, and the racemization process is isoelec-
tronically related to the SN1 reaction at a tertiary carbon atom.
Further studies on the effects of substituents at the boron atom
on the barrier to racemization and the determination of absolute
configuration are in progress.
27
Easily eluted isomer: mp 141–142 ꢄC, ½ꢁꢁD þ 169 (c 0.10,
acetone), less easily eluted isomer: mp 141–143 ꢄC,
27
½ꢁꢁD ꢂ 167 (c 0.10, acetone). 1b: Yield 79%; mp 134–
136 ꢄC; Found: C, 60.57; H, 4.89; N, 4.42% (Calcd for
C17H17BF3
1
NO2: C, 60.93; H, 5.11; N, 4.18%); H NMR (CDCl3) ꢀ ¼
2:23 (3H, s), 2.90 (3H, s), 3.96 and 4.48 (2H, ABq, JAB
13:5 Hz), 7.20 (1H, m), 7.31–7.44 (7H, m), 7.80 (1H, m);
11B NMR (CDCl3) ꢀ ¼ 11:3 (half-band width, 81 Hz).
¼
12 11B NMR signals of similar borane complexes are observed at
ꢀ 4–12: for example, (N–B)-Bu(AcO)B(CH2)3NMe2 ꢀ 8.3. H.
Noth and B. Wrackmeyer, ‘‘Nuclear Magnetic Resonance
¨
Spectroscopy of Boron Compounds,’’ Springer Verlag, Berlin
(1978).
13 Crystal data for 1a: C18H17BF5NO2, Mr ¼ 385:14, ortho-
rhombic, space group P212121 (#19), a ¼ 7:7168ð2Þ, b ¼
ꢀ
ꢀ 3
14:1933ð5Þ, c ¼ 17:0483ð5Þ A, V ¼ 1867:2ð1Þ A , Z ¼ 4,
Dcalcd ¼ 1:370 g cmꢂ3, ꢂ(Mo Kꢁ) = 1.21 cmꢂ1, T ¼ 93 K,
Rigaku RAXIS diffractometer, 2170 reflections, R1 ¼
0:049, Rw ¼ 0:138. CCDC deposition number: 227362.
14 For example, the N–B bond length and the THC of (N–B)-
This work was partly supported by the Japan Private School
Promotion Foundation.
ꢀ
Ph2BO(CH2)2NMe2 are 1.691 A and 80%, respectively.
S. J. Rettig and J. Trotter, Can. J. Chem., 61, 2334 (1983);
See also H. Hopfl, J. Organomet. Chem., 581, 129 (1999).
References and Notes
¨
1
2
a) I. Omae, Coord. Chem. Rev., 83, 137 (1988). b) I. Omae,
‘‘Organometallic Intramolecular Coordination Compounds,’’
Elsevier, Amsterdam (1986), p 35.
15 The pKa values of trifluoroacetic acid and pentafluoropro-
pionic acid are 0.52 and ꢂ0:41, respectively. ‘‘Ionisation
Constants of Organic Acids in Aqueous Solutions,’’ ed. by
E. P. Serjeant and B. Dempsey, Pergamon Press, Oxford
(1979).
¯
a) S. Toyota and M. Oki, Bull. Chem. Soc. Jpn., 63, 1168
¯
(1990). b) S. Toyota and M. Oki, Bull. Chem. Soc. Jpn., 64,
Published on the web (Advance View) January 26, 2004; DOI 10.1246/cl.2004.206