4
Tetrahedron
2.
Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo,
M. Tetrahedron 1971, 27, 3575. For examples of Minisci reaction:
(b) Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle,
M.; Giordano, C. J. Org. Chem. 1986, 51, 4411. (c) Citterio, A.;
Minisci, F.; Porta, O.; Sesana, G. J. Am. Chem. Soc. 1977, 99,
7960. For a recent perpective see: Yan, M.; Lo, J. C.; Edwards, J.
T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138 (39), 12692.
For recent examples: (a) O’Brien, A. G.; Maruyama, A.; Inokuma,
Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem. Int.
Ed. Engl. 2014, 53, 11868. (b) Gui, J.; Zhou, Q.; Pan, C.-M.;
Yabe, Y.; Burns, A. C.; Collins, M. R.; Ornelas, M. A.; Ishihara,
Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136 (13), 4853. (c) Zhou,
Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh, E. M.;
Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013, 135
(35), 12994. (d) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E.
D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach,
N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492
(7427), 95. (e) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.;
Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl.
Acad. Sci. U.S.A. 2011, 108 (35), 14411. (f) Nagib, D. A.;
MacMillan, D. W. C. Nature 2011, 480, 224.
For reviews on xanthate-based radical chemistry, see: (a) Quiclet-
Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557– 576. (b)
Zard, S. Z. “Xanthates and RelatedDerivatives as Radical
Precursors”, In Encyclopedia of Radicals in Chemistry, Biology
and Materials, John Wiley & Sons, Ltd, Chichester, UK, 2012. (c)
Quiclet-Sire, B.; Zard, S. Z. Chem. Eur. J. 2006, 12, 6002. (d)
Quiclet-Sire, B.; Zard, S. Z. Top. Curr. Chem. 2006, 264, 201. (e)
Zard, S. Z. In Radicals in Organic Synthesis (Eds. P. Renaud, M.
Sibi), Wiley-VCH, Weinhem, 2001, p. 90.
shorter reactions times compared with the reported conditions,
3.
we decided to disclose our own results. Thus, as depicted in
Table 4, the yields obtained in our study using microwave
irradiation, were similar to those obtained under reported
conventional heating with xanthates derived from esters (18a,g,l)
amides (18b,m,n), nitriles (18c,h,o,p), and ketones
(18d,e,i,j,q,r,s,t). Novel examples (different from those reported
previously) using amides derived from morpholine (18b) and
malonates (18g,k,u,v) also worked well in the alkylation process.
4.
The proposed mechanism for the radical alkylation is based on
the reported similar processes6 and is illustrated in Scheme 1 with
the caffeine system. First, the radical 20 is generated from the
corresponding xanthate upon the action of the radical 19 which
comes from the thermal fragmentation/decarboxylation process
of the DLP. Then, this radical is added to the heterocyclic system
producing a new radical 21 which, is promptly oxidized to the
cation 22,6 in the presence of a stoichiometric amount of the
peroxide, facilitating the regeneration of the original conjugated
system.
5.
Scheme 1. Proposed mechanism.
6.
(a) Osornio, Y. M.; Cruz-Almanza, R.; Jimenez-Montano, V.;
Miranda, L. D. Chem. Commun. 2003, 2316. (b) Reyes-Gutiérrez,
P. E.; Torres-Ochoa, R. O.; Martínez, R.; Miranda, L. D. Org.
Biomol. Chem. 2009, 7, 1388. (c) López, E. F.; Gómez-Pérez, L.
B.; Miranda, L. D. Tetrahedron Lett. 2010, 51, 6000. (d)
Mijangos, M. V.; Marrero, J. G.; Miranda, L. D.; Vincent-Ruz, P.;
Luján-Montelongo, A.; Olivera-Díaz, D.; Bautista, E.; Ortega, A.;
Campos-González, M. L.; Gámez-Montaño, R. Org. Biomol.
Chem. 2012, 10, 2946. (e) Miranda, L. D.; Icelo-Ávila, E.;
Rentería-Gómez, A.; Pila, M.; Marrero, J. G. Eur. J. Org. Chem.
2015, 19, 4098.
7.
8.
9.
Quiclet-Sire, B.; Revol, G.; Zard, S. Z. Org. Lett. 2009, 11, 3554.
Nehlig, A.; Daval, J.-L.; Debry, G. Brain Res. Rev. 1992, 17, 139.
(a) Robertson, D.; Frolich, J.; Carr, R.; Watson, J.; Hollield, J.;
Shand, D.; Oates, J. N. Engl. J. Med., 1978, 298, 181. (b)
Fredholm, B. B.; Battig, K.; Holmén, J.; Nehlig, A.; Zvartau, E. E.
Pharmacol. Rev., 1999, 51, 83. (c) Bode, A. M.; Dong, Z. Cancer
Lett., 2007, 247, 26. (d) Andrs, M.; Muthna, D.; Rezacova, M.;
Seifrtova, M.; Siman, P.; Korabecny, J.; Benek, O.; Dolezal, R.;
Soukup, O.; Jun, D.; Kuca, K. RSC Adv. 2016, 6, 32534.
In closing, we have demonstrated that the xanthate-based radical
chemistry is a practical methodology to regioselectively directly
install several electrophilic radicals (positioned alpha to a
carbonyl function, such as esters, amides, ketones, malonates and
cyano groups) onto caffeine, uracil, and imidazo[1,2-a]pyridine
systems, using dilauroyl peroxide as both initiator end oxidant,
under microwave irradiation. This study not only streamlines the
scope of the xanthate radical chemistry but also contributes to
synthetizing novel derivatives of title heterocyclics towards drug
candidates. The methodology allows the intermolecular
regioselective construction of a sp2-sp3 C-C bond via a C-H
functionalization in an aromatic substitution, from readily
available starting materials and without substrate preactivation.
We believe that this protocol might provide rapid access to more
complex scaffolds by using also more complex xanthates
derivatives.
10. Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z Org. Lett.,
2001, 3, 1069.
11. (a)
Pałasz, A.; Cież, D. Eur. J. Med. Chem. 2015, 97, 582.
(b) Parker, W. B. Chem. Rev. 2009, 109, 2880. (c) Zhi, C.; Long,
Z.; Manikowski, A.; Bron, N. C.; Tarantino, P. M.; Holm, K.; Dix,
E. J.; Wright, G. E.; Foster, K. A.; Butler, M. M.; LaMarr, W. A.;
Skow, D. J.; Motorina, I.; Lamothe, S.; Storer, R. J. Med. Chem.
2005, 48, 7063. (d) Pathak, T. Chem. Rev. 2002, 102 1623.
(e)ꢀSoladino, R.; Crestini, C.; Palamara, A. T.; Danti, M. C.;
Manetti, F.; Corelli, F.; Garaci, E.; Botta, M. J. Med. Chem. 2001,
44, 4554.ꢀ(f) Brown, D. J. In Heterocyclic Compounds, vol. 52,
Interscience, New York, 1994.
Acknowledgments
12. (a) Le Manach, C.; Paquet, T.; Cabrera, D. G.; Younis, Y.; Taylor,
D.; Wiesner, L.; Lawrence, N.; Schwager, S.; Waterson, D.;
Witty, M. J.; Wittlin, S.; Street, L. J.; Chibale, K. J. Med. Chem.
2014, 57, 8839. (b) Andaloussi, M.; Moreau, E.; Masurier, N.;
Lacroix, J.; Gaudreault, R. C.; Chezal, J.-M.; El Laghdach, A.;
Canitrot, D.; Debiton, E.; Teulade, J.-C.; Chavignon, O. Eur. J.
Med. Chem. 2008, 43, 2505. (c) K. C. Rupert, J. R. Henry, J. H.
Dodd, S. A. Wadsworth, D. E. Cavender, G. C. Olini, B. Fahmy
and J. Siekierka, Bioorg. Med. Chem. Lett., 2003, 13, 347. (d)
Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz B. A.;
Vance, L. J. Med. Chem. 1999, 42, 50 (e) Lhassani, M.;
Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.;
Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq E.; Gueiffier, A.
Eur. J. Med. Chem. 1999, 34, 271.
Financial support from “Marcos Moshinsky Foundation”, and
PAPIIT-UNAM (IN210516), is gratefully acknowledged. We
also thank R. Patiño, A. Peña, E. Huerta, I. Chavez, R. Gabiño,
Ma. C. García-González, L. Velasco and J. Pérez for technical
support.
References and notes
1.
For a review see: Rueping, M.; Nachtsheim, B. J. Beilstein J. Org.
Chem. 2010, 6, 1, and references cited therein.
13. (a) Morton, S.; Lader, M. Human psychopharmacology, 1992, 7,
239-248. (b) Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali,