L. Llauger et al. / Tetrahedron Letters 45 (2004) 9549–9552
9551
Tung, J. C.; Loomis, B. R. J. Am. Chem. Soc. 2000, 122,
4280–4285.
The methodology can conveniently be applied to pro-
duce an array of such compounds containing the desired
oxidation state on sulfur.
5. Foti, C. J.; Fields, J. D.; Kropp, P. J. Org. Lett. 1999, 6,
903–904.
6. OXONEÒ is a product of the Du Pont Company
consisting of a 2:1:1 mixture of the active ingredient
KOSO2OOH, along with KHSO4, and K2SO4,
respectively.
Acknowledgements
The work was funded in part by AACR-Cancer Re-
search and Prevention Foundation, Mr. William H.
Goodwin and Mrs. Alice Goodwin and the Common-
wealth Cancer Foundation for Research and MSKCC
Experimental Therapeutics Program and a generous
donation from the Taub Foundation.
7. Chien, T.-C.; Chen, C.-S.; Yeh, J.-Y.; Wang, K.-C.;
Chern, J.-W. Tetrahedron Lett. 1995, 36, 7881–7884.
8. Synthesis of 1a is representative: To a solution of 9-butyl-
8-(3-methoxy-phenylsulfanyl)adenine3h (260mg, 0.8mmol)
in toluene–CH2Cl2 (26:5), were added PPh3 (674mg,
2.5mmol) and DBAD (240mg, 1.0mmol). The reaction
mixture was stirred overnight at room temperature. The
organic layer was washed with brine, dried over anhy-
drous Na2SO4, and evaporated under vacuum. Subse-
quent to solvent removal, the crude was chromatographed
on silica gel eluting with CHCl3–hexanes–EtOAc at 2:2:1
to provide 1a (360mg, 70% isolated yield).
Supplementary data
Supplementary data associated with this article can be
characterization (1H NMR, 13C NMR, IR, and MS)
of all presented compounds is available on line with
the paper in ScienceDirect.
9. Lucas, B.; Rosen, N.; Chiosis, G. J. Comb. Chem. 2001, 3,
518–520.
10. Synthesis of 1a is representative: To a solution of sulfide 1
(200mg, 0.73mmol) in toluene–CH2Cl2 (22:4.4mL) (5:1),
were added butanol (87lL, 0.95mmol), PPh3 (425mg,
1.6mmol) and DBAD (860mg, 3.7mmol). The reaction
was stirred at room temperature overnight. The product
was purified by flash silica gel column chromatography,
eluting with CHCl3–hexanes–EtOAc at 2:2:1to provide
References and notes
1
130mg of 1a. H NMR (400MHz, CDCl3): d 8.01(s, 1H,
1. (a) Arris, C. E.; Boyle, F. T.; Calvert, A. H.; Curtin, N. J.;
Endicott, J. A.; Garman, E. F.; Gibson, A. E.; Golding, B.
T.; Grant, S.; Griffin, R. J.; Jewsbury, P.; Johnson, L. N.;
Lawrie, A. M.; Newell, D. R.; Noble, M. E.; Sausville, E.
A.; Schultz, R.; Yu, W. J. Med. Chem. 2000, 43, 2797–
2804; (b) Chapman, E.; Ding, S.; Schultz, P. G.; Wong, C.
H. J. Am. Chem. Soc. 2002, 124, 14524–14525; (c) Perez,
O. D.; Chang, Y. T.; Rosania, G.; Sutherlin, D.; Schultz,
P. G. Chem. Biol. 2002, 4, 475–483.
H-2), 7.84 (m, 6H, o-PPh3), 7.45 (m, 3H, p-PPh3), 7.37
(m, 6H, m-PPh3), 7.09 (t, J = 8.0Hz, 1H), 6.83 (t, J =
1.8Hz, 1H), 6.80 (m, 1H), 6.67 (dd, J = 2.0, 8.3Hz, 1H),
4.00 (t, J = 7.7Hz, 2H, NCH2), 3.67 (s, 3H, OCH3), 1.54
(m, 2H), 1.17 (m, 2H), 0.75 (t, J = 7.4Hz, 3H, CH3). 13C
NMR (100MHz, CDCl3): d 160.5, 159.9, 152.1, 151.5,
142.3, 134.6, 133.2, 131.7, 129.9, 129.2, 128.3, 121.4, 114.6,
112.8, 55.2, 43.4, 31.5, 19.8, 13.5. MS (EIS) m/z 590.2
(M+1).
2. Chiosis, G.; Lucas, B.; Huezo, H.; Solit, D.; Basso, A.;
Rosen, N. Curr. Cancer Drug Targets 2003, 5, 371–
376.
11. Syntheses of sulfoxide 3a and sulfone 4a are representa-
tive: Alumina (Fisher A540; 480mg) was equilibrated with
air at 120°C for at least 48h previous to use. The flask was
stoppered and the contents allowed to cool to 25°C. Water
(0.06mL) was added and the adsorbent was tumbled on a
rotatory evaporator at atmospheric pressure until uni-
formly free flowing. A solution of sulfide 1a (115mg,
0.186mmol) in CH2Cl2 (1mL) was added with stirring,
followed by OXONEÒ (120mg, 0.194mmol) or (480mg,
0.776mmol) if sulfoxide 3a or sulfone 4a were desired,
respectively. The slurry was stirred for 4h or overnight at
25°C if sulfoxide 3a or sulfone 4a were desired, respec-
tively. The adsorbent was then removed by vacuum
filtration and washed first with EtOAc and then with a
solution of CHCl3–hexanes–EtOAc–MeOH–NH4OH at
2:2:1:0.5:0.1. The combined organic fractions were washed
with a saturated aqueous solution of FeSO4 and dried over
anhydrous Na2SO4. Following concentration under
reduced pressure, the residue was chromatographed
through silica gel by elution with CH2Cl2–EtOAc at 2:1
to afford 70mg of sulfoxide 3a or 76mg of sulfone 4a,
3. (a) Young, R. C.; Jones, M.; Milliner, K. J.; Rana, K. K.;
Ward, J. G. J. Med. Chem. 1990, 33, 2073–2080; (b)
Gonnella, N. C.; Nakanishi, H.; Holtwick, J. B.; Horo-
witz, D. S.; Kanamori, K. J. Am. Chem. Soc. 1983, 105,
2050–2053; (c) Draminsky, M.; Frass, E. Pol. J. Chem.
1987, 61, 901–904; (d) Chiosis, G.; Lucas, B.; Shtil, A.;
Huezo, H.; Rosen, N. Bioorg. Med. Chem. 2002, 11, 3555–
3564; (e) Camaioni, E.; Vittori, S.; Volpini, R.; Klotz,
K.-N.; Cristalli, G. Bioorg. Med. Chem. 1998, 6, 523–533;
(f) Klotz, K-N.; Kachler, S.; Lambertucci, C.; Vittori, S.;
Volpini, R.; Cristalli, G. Naunyn-ScmiedebergÕs Arch.
Pharmacol. 2003, 367, 629–634; (g) He, H.; Llauger, L.;
Rosen, N.; Chiosis, G. J. Org. Chem. 2004, 69, 3230–3232;
(h) Kasibhatla, S. R.; Hong, K.; Zhang, L.; Biamonte, M.
A.; Boehm, M. F.; Shi, J.; Fan, J. PCT Int. Appl., 2003,
WO 2003037860.
4. (a) Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori,
R. Tetrahedron 2001, 57, 2469–2476; (b) Varma, R. S.;
Naicker, K. P. Org. Lett. 1999, 2, 189–191; (c) Choi, S.;
Yang, J. D.; Ji, M.; Choi, H.; Kee, M.; Ahn, K.-H.;
Byeon, S.-H.; Baik, W.; Koo, S. J. Org. Chem. 2002, 66,
8192–8198; (d) Nicolaou, K. C.; Magolda, R. L.; Sipio, W.
J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M. J. Am.
Chem. Soc. 1980, 102, 3784–3793; (e) Greenhalgh, R. P.
Synlett 1992, 235–236; (f) Ceccherelli, P.; Curini, M.;
Marcotullio, M. C.; Epifano, F.; Rosati, O. Synlett 1996,
767–768; (g) Kropp, P. J.; Breton, G. W.; Fields, J. D.;
1
respectively. Spectra of sulfoxide 3a: H NMR (400MHz,
CDCl3): d 8.02 (s, 1H, H-2), 7.82 (m, 6H, o-PPh3), 7.46 (m,
3H, p-PPh3), 7.36 (m, 6H, m-PPh3), 7.29 (t, J = 8.0Hz,
1H), 7.26 (m, 1H), 7.13 (br d, J = 7.8Hz, 1H), 6.89 (dd,
J = 2.3, 8.0Hz, 1H), 4.18 and 3.97 (2m, 2H, NCH2), 3.74
(s, 3H, OCH3), 1.62 and 0.85 (2m, 2H), 1.12 (t, J = 7.0Hz,
2H), 0.68 (t, J = 7.0Hz, 3H, CH3). 13C NMR (100MHz,
CDCl3): d 160.4, 153.4, 151.9, 148.0, 143.2, 133.3, 132.0,
130.3, 128.9, 128.4, 127.9, 116.9, 116.7, 109.1, 55.6, 43.5,