ChemComm
Communication
and Abu are readily accommodated by the steric demands of the
3
10 helical environment.19 Although the steric differentiation at the
stereogenic centre of Val, Phe and tert-Leu (entries 7–10) is greater,
these residues have a lower propensity for helix formation,20 and
presumably favour alternative conformations with lower screw-
sense preferences. The lower screw-sense control induced by
Ser(Ot-Bu)NHt-Bu (entry 5) suggests that more remote steric bulk
is likewise not well tolerated by a 310 helical structure. a-MeVal,
being quaternary, is compatible with a 310 helix,4d,21 the greater
selectivity observed with Ala vs. a-MeVal being simply due to the
steric differentiation between Me vs. H and i-Pr vs. Me.
In conclusion, C-terminal L amino acid residues induce a
preferred right-handed screw sense as their amide derivatives
and left-handed screw sense as their ester derivatives in a series
of helical Aib oligomers. Screw-sense control is maximised by
residues that can participate in a 310 helical structure, namely
L-Ala and the dimer of L-a-MeVal.
This work was supported by the European Research Council
(AdG ROCOCO) and by the EPSRC (grant number EP/K039547).
Jonathan Clayden holds a Royal Society Wolfson Research
Merit Award.
Fig. 2 Conformations of Aib oligomers 3 bearing (a) a C-terminal sec-
ondary amide function and (b) C-terminal ester (or tertiary amide) func-
tion, with (c) and (d) showing Newman projections of their C-termini
viewed from N-terminal direction to illustrate the origin of the conforma-
tional preference.
Notes and references
1 Y. Zhang, Curr. Opin. Struct. Biol., 2008, 17, 342; A. M. Lesk, Intro-
duction to Bioinformatics, OUP (Oxford), 3rd edn, 2008.
2 (a) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173; (b) D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem. Rev.,
2001, 101, 3893.
3 (a) S. Hecht and I. Huc, Foldamers, Wiley-VCH, Weinheim, 2007;
(b) B. Gong, Acc. Chem. Res., 2008, 41, 1376; (c) I. Saraogi and
A. D. Hamilton, Chem. Soc. Rev., 2009, 38, 1726; (d) J.-m. Juwarker,
H. Suk and K.-S. Jeong, Chem. Soc. Rev., 2009, 38, 3316; (e) D.-W. Zhang,
X. Zhao, J.-L. Hou and Z.-T. Li, Chem. Rev., 2012, 112, 5271; ( f ) H. L. Fu,
Y. Liu and H. Q. Zeng, Chem. Commun., 2013, 49, 4127.
Fig. 3 X-ray crystal structure18 of 3-Ala-Ot-Bu, showing a C-terminal
Schellman motif and left-handed (M) helicity.
`
4 (a) R. A. Brown, T. Marcelli, M. De Poli, J. Sola and J. Clayden, Angew.
noted before to induce a left-handed screw sense in an otherwise
achiral oligomer,5c and Fig. 2d illustrates the origin of the effect. The
tertiary amide 3-Ala-N(CH2)4 also exhibits M screw-sense, presumably
also the result of a corresponding ‘tert-amide Schellman’ motif.17
The conformational constraint imposed by their additional
hydrogen bond means that the secondary amides generally control
screw-sense preference to a greater degree than the esters, irrespective
of the size of the amide N-substituent (compare entries 1 and 2).
Within each series there are however some surprising features.
Acidification of the C-terminal NH group by the tosyl group in
3-Phe-NHTs (entry 8) fails to increase conformational preference over
the tert-butyl amide (entry 7), and in both the amide and the ester
series the greatest degree of screw-sense preference (75% h.e. for
3-Ala-NHt-Bu) induced by a single chiral residue results from Ala
(entries 1, 2 and 13), rather than the more bulky chiral amino acids.
Only the a-methylvaline dimer of 3-aMv2-NHt-Bu (entry 12; a motif
which induces comparably high screw-sense control when located at
the N terminus4d,e) exerts more powerful control (80% h.e.) than
AlaNHt-Bu.
`
`
Chem., Int. Ed., 2012, 51, 1395; (b) J. Clayden, A. Castellanos, J. Sola
and G. A. Morris, Angew. Chem., Int. Ed., 2009, 48, 5962; (c) J. Sola,
G. A. Morris and J. Clayden, J. Am. Chem. Soc., 2011, 133, 3712;
(d) L. Byrne, J. Sola, T. Boddaert, T. Marcelli, R. W. Adams,
G. A. Morris and J. Clayden, Angew. Chem., Int. Ed., 2014, 53, 151;
(e) M. De Poli, L. Byrne, R. A. Brown, J. Sola, A. Castellanos,
T. Boddaert, R. Wechsel, J. D. Beadle and J. Clayden, J. Org. Chem.,
2014, 69, 4659; ( f ) U. Orcel, M. De Poli, M. De Zotti and J. Clayden,
Chem. – Eur. J., 2013, 19, 16357; (g) T. Boddaert and J. Clayden,
Chem. Commun., 2012, 48, 3397; (h) S. J. Pike, M. De Poli,
W. Zawodny, J. Raftery, S. J. Webb and J. Clayden, Org. Biomol.
Chem., 2013, 11, 3168; (i) M. De Poli and J. Clayden, Org. Biomol.
`
`
`
Chem., 2014, 12, 836; ( j) J. Sola, S. P. Fletcher, A. Castellanos and
J. Clayden, Angew. Chem., Int. Ed., 2010, 49, 6836; (k) R. A. Brown,
V. Diemer, S. J. Webb and J. Clayden, Nat. Chem., 2013, 5, 835.
5 (a) Y. Inai, Y. Kurokawa, A. Ida and T. Hirabayashi, Bull. Chem. Soc.
Jpn., 1999, 72, 55; (b) N. Ousaka and Y. Inai, J. Org. Chem., 2009,
74, 1429 and references therein; (c) Y. Inai, Y. Kurokawa and
T. Hirabayashi, Biopolymers, 1999, 49, 551.
6 B. Pengo, F. Formaggio, M. Crisma, C. Toniolo, G. M. Bonora,
Q. B. Broxterman, J. Kamphuis, M. Saviano, R. Iacovino, F. Rossi
and E. Benedetti, J. Chem. Soc., Perkin Trans. 2, 1998, 1651.
7 J. Venkatraman, S. C. Shankaramma and P. Balaram, Chem. Rev.,
2001, 101, 3131.
8 M. De Poli, M. De Zotti, J. Raftery, J. A. Aguilar, G. A. Morris and
J. Clayden, J. Org. Chem., 2013, 78, 2248.
9 (a) J. Sola, M. Helliwell and J. Clayden, J. Am. Chem. Soc., 2010,
132, 4548; (b) Y. Inai, Y. Ishida, K. Tagawa, A. Takasu and
T. Hirabayashi, J. Am. Chem. Soc., 2002, 124, 2466; (c) B. Pengo,
F. Formaggio, M. Crisma, C. Toniolo, G. M. Bonora, Q. B. Broxterman,
The more powerful control exerted by residues Ala or Abu
(entries 1–3) with smaller side chains is consistent with screw-sense
control being greatest in a conformationally uniform helix that can
adopt through its whole length a 310 helical structure,7 since Ala
`
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 7949--7952 | 7951