Organic Letters
Letter
(p) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45,
7896.
Scheme 5. Mechanistic Proposal for Gold(III)-Catalyzed
Cyclization and Gold(I)-Catalyzed Meyer−Schuster
Rearrangement Followed by Gold(III)-Catalyzed Oxa-
Michael Addition
(2) (a) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel’in, A.
V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (b) Sromek, A. W.;
Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500.
(3) For coordination and activation by gold catalysis of propargylic
alcohols, see: (a) Debleds, O.; Gayon, E.; Vrancken, E.; Campagne, J.-M.
Beilstein J. Org. Chem. 2011, 7, 866. (b) Georgy, M.; Boucard, V.;
Debleds, O.; Zotto, C. D.; Campagne, J.-M. Tetrahedron 2009, 65, 1758.
(c) Georgy, M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005,
127, 14180.
(4) (a) Aponick, A.; Li, C.-Y.; Biannic, B. Org. Lett. 2008, 10, 669.
(b) Reich, N. W.; Yang, C.-G.; Shi, Z.; He, C. Synlett 2006, 1278.
(5) (a) Hikawa, H.; Suzuki, H.; Azumaya, I. J. Org. Chem. 2013, 78,
12128. (b) Hikawa, H.; Suzuki, H.; Yokoyama, Y.; Azumaya, I. J. Org.
Chem. 2013, 78, 6714. (c) Biswas, S.; Samec, J. S. M. Chem.Asian J.
́
2013, 8, 974. (d) Cuenca, A. B.; Mancha, G.; Asensio, G.; Medio-Simon,
M. Chem.Eur. J. 2008, 14, 1518. (e) Terrasson, V.; Marque, S.;
Georgy, M.; Campagne, J.-M.; Prim, D. Adv. Synth. Catal. 2006, 348,
2063.
(6) Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Adv. Synth.
Catal. 2006, 348, 691.
oxophilic (hard) gold(III) activates the carbonyl group of E (n =
1 or 3) efficiently8 to furnish cyclic ethers 3 (n = 1 or 3) having a
carbonyl group.
In summary, we present gold(I)/(III)-catalyzed regiodiver-
gent syntheses of two types of cyclic ethers from propargylic
alcohols, by making use of the hard−soft principle. We are
currently applying the method to the synthesis of biologically
active cyclic ether derivatives. Experimental and theoretical
investigations on the reaction mechanism are also in progress.
(7) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
(8) For computational studies on Lewis acid catalyzed reactions
including gold catalysts, see: Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.
Heats of formation of the complexes of cyclohexylacetylene (C6H11−
CCH) with AuCl and AuCl3 were calculated to be 36.2 and 30.9 kcal/
mol, respectively, whereas those of cyclohexylcarbaldehyde (C6H11−
CHO) with AuCl and AuCl3 were estimated to be 32.7 and 35.1 kcal/
mol, respectively. These computational data are consistent with the
softer (π-philic) nature of the gold(I) catalyst and harder (oxo-philic)
character of the gold(III) catalyst.
(9) For recent examples of gold-catalyzed Meyer−Schuster rearrange-
ment of propargylic alcohols, see: (a) Hansmann, M. M.; Hashmi, A. S.
K.; Lautens, M. Org. Lett. 2013, 15, 3226. (b) Pennell, M. N.; Turner, P.
G.; Sheppard, T. D. Chem.Eur. J. 2012, 18, 4748. (c) Pennell, M. N.;
Unthank, M. G.; Turner, P.; Sheppard, T. D. J. Org. Chem. 2011, 76,
1479. (d) Rieder, C. J.; Winberg, K. J.; West, F. G. J. Org. Chem. 2011, 76,
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and characterization data, 1H and 13
C
NMR spectra, and HRMS for all novel compounds. The
Supporting Information is available free of charge on the ACS
50. (e) Ramon
́
, R. S.; Gaillard, S.; Slawin, A. M. Z.; Porta, A.; D’Alfonso,
AUTHOR INFORMATION
Corresponding Authors
■
A.; Zanoni, G.; Nolan, S. P. Organometallics 2010, 29, 3665. (f) Ramon
́
,
R. S.; Marion, N.; Nolan, S. P. Tetrahedron 2009, 65, 1767. (g) Egi, M.;
Yamaguchi, Y.; Fujiwara, N.; Akai, S. Org. Lett. 2008, 10, 1867.
(h) Lopez, S. S.; Engel, D. A.; Dudley, G. B. Synlett 2007, 949. (i) Lee, S.
I.; Baek, J. Y.; Sim, S. H.; Chung, Y. K. Synthesis 2007, 2107. (j) Engel, D.
A.; Dudley, G. B. Org. Lett. 2006, 8, 4027.
Notes
The authors declare no competing financial interest.
(10) For reviews on Meyer−Schuster rearrangement, see: (a) Cadier-
no, V.; Crochet, P.; García-Garrido, S. E.; Gimeno, J. Dalton Trans. 2010,
39, 4015. (b) Engle, D. A.; Dudley, G. B. Org. Biomol. Chem. 2009, 7,
4149. (c) Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819.
(11) Reactions of this type involving gold catalysts have only limited
scope; see: (a) Wohland, M.; Maier, M. E. Synlett 2011, 1523.
(b) Schwehm, C.; Wohland, M.; Maier, M. E. Synlett 2010, 1789.
(12) Reactions of this type in the presence of platinum catalysts have
been reported; see: Liang, Q.; Qian, M.; Razzak, M.; De Brabander, J. K.
Chem.Asian J. 2011, 6, 1958.
́
(13) For reviews on the Nicholas reaction, see: (a) Martín, T.; Padron,
ACKNOWLEDGMENTS
■
This work was supported by Platform for Drug Discovery,
Informatics, and Structural Life Science from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
REFERENCES
■
(1) For books on gold catalysts, see: (a) Krause, N.; Morita, N.
Application of Copper, Silver and Gold in Preparative Organic
Chemistry. In Comprehensive Organometallic Chemistry III; Crabtree,
R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, 2006; Vol 9, p 501.
(b) Krause, N. Organogold Chemistry. In Organometallics in Synthesis,
Fourth Manual; Lipshutz, B. H., Ed.; Wiley: NJ, 2013; p 426. For
reviews and highlights, see: (c) Bandini, M. Chem. Soc. Rev. 2011, 40,
1358. (d) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675. (e) Hashmi, A.
S. K. Angew. Chem., Int. Ed. 2010, 49, 5232. (f) Bongers, N.; Krause, N.
Angew. Chem., Int. Ed. 2008, 47, 2178. (g) Shen, H. C. Tetrahedron 2008,
64, 3885. (h) Shen, H. C. Tetrahedron 2008, 64, 7847. (i) Skouta, R.; Li,
C.-J. Tetrahedron 2008, 64, 4917. (j) Arcadi, A. Chem. Rev. 2008, 108,
3266. (k) Muzart, J. Tetrahedron 2008, 64, 5815. (l) Gorin, D. J.; Toste,
F. D. Nature 2007, 446, 395. (m) Hashmi, A. S. K. Chem. Rev. 2007, 107,
J. I.; Martín, V. S. Synlett 2014, 12. (b) Kann, N. Curr. Org. Chem. 2012,
16, 322.
(14) Maier’s group reported that 3−18 mol % of Ph3PAuO2CCF3
catalyzed Meyer−Schuster rearrangement followed by oxa-Michael
addition to afford cyclic ethers containing a carbonyl group (see ref 11).
Although we reexamined the use of 5 mol % of Ph3PAuO2CCF3 for the
transformation of 1a, we failed to obtain 3a. In the case of low catalyst
loading, Ph3PAuO2CCF3 appears not to be an efficient catalyst.
(15) (a) Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L. Adv. Synth.
Catal. 2003, 345, 1247. (b) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000,
39, 3590.
3180. (n) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46,
̈
3410. (o) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750.
D
Org. Lett. XXXX, XXX, XXX−XXX