Angewandte
Chemie
7.54 (dd, 3J(H,P) = 11.6 Hz, 3J(H,H) = 8.4 Hz, 2H; o-Ph), 7.40
Keywords: luminescence · optical properties · phosphorus
heterocycles · polymers · thiophene
.
(dd, 3J(H,H) = 8.4 Hz, 3J(H,P) = 2.1 Hz, 2H; m-Ph), 7.34 (dd,
3J(H,H) = 4.9 Hz, 3J(H,P) = 3.1 Hz, 2H; Ar-H), 7.16 (dd,
3J(H,H) = 4.9 Hz, 4J(H,P) = 1.2 Hz, 2H; Ar-H), 1.29 (s, 9H;
tBu); 13C{1H} NMR (125.6 MHz, 258C, CDCl3): d = 150.5 (d,
2J(C,P) = 2.9 Hz; Ar-Ar), 144.9 (d, 4J(C,P) = 10.5 Hz; p-Ph),
139.3 (d, 1J(C,P) = 63.3 Hz; ipso-Ar), 131.8 (d, J(C,P) = 10.5 Hz;
Ar-H), 128.1 (d, J(C,P) = 12.5 Hz; Ar-H), 126.1 (d, J(C,P) =
16.3 Hz; Ar-H), 126.1 (d, J(C,P) = 11.5 Hz; Ar-H), 122.3 (d,
1J(C,P) = 54.7 Hz; ipso-Ph), 35.0 (s; CMe3), 31.0 ppm (s; CH3);
11B NMR (160.3 MHz, 258C, CDCl3): d = ꢀ39.2 ppm. 11: 31P{1H}
NMR (126.0 MHz, 258C, CDCl3): d = 19.1 ppm; 1H NMR
(400 MHz, 258C, CDCl3): d = 7.62 (dd br, 3J(H,P) = 13.2 Hz,
3J(H,H) = 8.5 Hz, 2H; o-Ph), 7.40 (dd br, 3J(H,H) = 8.5 Hz,
4J(H,P) = 3.0 Hz, 2H; m-Ph), 7.26 (dd, 3J(H,H) = 5.0 Hz,
3J(H,P) = 3.4 Hz, 2H; Ar-H), 7.12 (dd, 2J(H,H) = 5.0 Hz,
4J(H,P) = 2.5 Hz, 2H; Ar-H), 1.26 ppm (s, 9H; tBu); 13C{1H}
NMR (100.6 MHz, 258C, CDCl3): d = 155.9 (s; p-Ar), 145.4 (d,
[1] a) F. Mathey, Angew. Chem. 2003, 115, 1616; Angew. Chem. Int.
Ed. 2003, 42, 1578; b) Z. Jin, B. L. Lucht, J. Organomet. Chem.
2002, 653, 167; c) C.-W. Tsang, M. Yam, D. P. Gates, J. Am.
Chem. Soc. 2003, 125, 1480; d) R. C. Smith, J. D. Protasiewicz, J.
Am. Chem. Soc. 2004, 126, 2268; e) C. Hay, M. Hissler, C.
Fischmeister, J. Rault-Berthelot, L. Toupet, L. Nyulµszi, R.
RØau, Chem. Eur. J. 2001, 7, 4222.
[2] See e.g.: a) Handbook of Oligo- and Polythiophenes (Ed.: D.
Fichou), Wiley-VCH, Weinheim, 1999; b) Conjugated Conduct-
ing Polymers, Vol. 102 (Ed.: H. Kiess), Springer, New York,
1992.
[3] G. Tourillion, Handbook of Conducting Polymers (Ed.: T. A.
Skotheim), Marcel Dekker, New York, 1986, pp. 293 – 350.
[4] J. Roncali, Chem. Rev. 1997, 97, 173.
[5] a) C. Hay, C. Fischmeister, M. Hissler, L. Toupet, R. RØau,
Angew. Chem. 2000, 112, 1882; Angew. Chem. Int. Ed. 2000, 39,
1812; b) C. Hay, D. Le Vilain, V. Deborde, L. Toupet, R. RØau,
Chem. Commun. 1999, 345; c) C. Fave, T.-Y. Cho, M. Hissler, C.-
W. Chen, T.-Y. Luh, C.-C. Wu, R. RØau, J. Am. Chem. Soc. 2003,
125, 9254.
[6] a) D. Delaere, M. T. Nguyen, L. G. Vanquickenborne, Phys.
Chem. Chem. Phys. 2002, 4, 1522; b) D. Delaere, M. T. Nguyen,
L. G. Vanquickenborne, J. Phys. Chem. A 2003, 107, 838; c) J.
Ma, S. Li, Y. Jiang, Macromolecules 2002, 35, 1109.
[7] a) S. S. H. Mao, T. D. Tilley, Macromolecules 1997, 30, 5566;
b) Y. Morisaki, Y. Aiki, Y. Chujo, Macromolecules 2003, 36,
2594.
[8] Dithieno[3,2-b:2’,3’-d]-1-(phenyl)phosphole oxide has been
reported before, see: J.-P. Lampin, F. Mathey, J. Organomet.
Chem. 1974, 71, 239.
[9] a) M. Pomerantz, Handbook of Conducting Polymers, 2nd ed.
(Eds.: T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds),
Marcel Dekker, New York, 1998, pp. 277 – 309; b) X. Zhang,
A. J. Matzger, J. Org. Chem. 2003, 68, 9813.
1
2J(C,P) = 24.0 Hz; Ar), 139.0 (d, J(C,P) = 111.9 Hz; Ar), 130.6
2
2
(d, J(C,P) = 11.8 Hz; o-Ar), 128.0 (d, J(C,P) = 14.7 Hz; o-Ar),
126.0 (d, 1J(C,P) = 111.1 Hz; Ar), 125.9 (d, 3J(C,P) = 13.2 Hz; m-
Ar), 125.8 (d, 3J(C,P) = 12.8 Hz; m-Ar), 34.9 (s; CMe3), 30.8 ppm
(s; C(CH3)3). 12: 31P{1H} NMR (162.0 MHz, 258C, CDCl3): d =
14.7 ppm; 1H NMR (500 MHz, 258C, CDCl3): d = 7.70 (dd,
3J(H,P) = 12.8 Hz, 3J(H,H) = 8.2 Hz, 2H; Ar-H), 7.46 (dd,
3J(H,H) = 8.2 Hz, 4J(H,P) = 2.8 Hz, 2H; Ar-H), 7.19 (d,
3J(H,P) = 2.4 Hz, 2H; Ar-H), 6.71 (dd, 3J(H,H) = 17.4 Hz,
3
J(H,H) = 10.7 Hz, 1H; CH CH2), 5.83 (d, 3J(H,H) = 17.4 Hz,
=
3
=
=
1H; CH CHH), 5.35 (d, J(H,H) = 10.7 Hz, 1H; CH CHH),
0.91 (s, 18H; SitBu), 0.28 (s, 6H; SiMe2), 0.27 ppm (s, 6H;
SiMe2); 13C{1H} NMR (125.7 MHz, 258C, CDCl3): d = 150.8 (d,
1J(C,P) = 23.9 Hz; ipso-Ar), 142.8 (d, J(C,P) = 14.3 Hz; Ar),
=
141.4 (d, J(C,P) = 18.2 Hz; Ar), 140.4 (s; p-Ar), 135.9 (s; CH
CH2), 133.3 (d, 2J(C,P) = 15.3 Hz; o-Ar), 131.3 (d, 2J(C,P) =
1
12.4 Hz; o-Ar), 129.0 (d, J(C,P) = 110.2 Hz; ipso-Ar), 126.6 (d,
3J(C,P) = 12.4 Hz; m-Ar), 116.5 (s; CH CH2), 26.2 (s;
=
SiC(CH3)3), 16.8 (s; SiC(CH3)3), ꢀ5.0 (s; SiMe), ꢀ5.1 ppm (s;
SiMe).
[16] G. Barbarella, L. Favaretto, G. Sotgiu, L. Antolini, G. Gigli, R.
Cingolani, A. Bongini, Chem. Mater. 2001, 13, 4112.
[17] B. Valeur, Molecular Fluorescence, Principles and Applications,
Wiley-VCH, Weinheim, 2002.
[18] M. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer,
Macromolecules 1993, 26, 2987.
[10] S. Y. Hong, J. M. Song, J. Chem. Phys. 1997, 107, 10607.
[11] T. Baumgartner, Macromol. Symp. 2003, 196, 279.
[12] a) K. Ogawa, S. C. Rasmussen, J. Org. Chem. 2003, 68, 2921; b) J.
Ohshita, M. Nodono, H. Kai, T. Watanabe, A. Kunai, K.
Komaguchi, M. Shiotani, A. Adachi, K. Okita, Y. Harima, K.
Yamashita, M. Ishikawa, Organometallics 1999, 18, 1453.
[13] Crystal data for 2: (C14H9PS2): Mr = 272.30, T= 153(2) K,
monoclinic, space group P2(1)/c, a = 12.740(3), b = 8.2365(16),
c = 11.729(2) , a = 90, b = 92.62(3), g = 908, V= 1229.5(4) 3,
[19] Encyclopedia of Polymer Science and Engineering, Rev. Ed.,
Wiley, New York, 1998.
Z = 4, 1calcd = 1.471 Mgmꢀ3
,
m = 0.534 mmꢀ1
,
l = 0.71073 ,
2qmax = 56.628, 12358 measured reflections, 3046 [R(int) =
0.0227] independent reflections, GOFon F2 = 1.080, R1 =
0.0317, wR2 = 0.0857 (I > 2s(I)), R1 = 0.0332, wR2 = 0.0868 (for
all data), largest difference peak and hole 0.429 and
ꢀ0.248 eꢀ3. The intensity data were collected on a Bruker
SMART D8 goniometer with an APEX CCD detector. The
structure was solved by direct methods (SHELXTL) and refined
on F2 by full-matrix least-squares techniques. Hydrogen atoms
were included by using a riding model. CCDC-244042 contains
the supplementary crystallographic data for this paper. These
conts/retrieving.html (or from the Cambridge Crystallographic
Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax:
(+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[14] a) K. Diemert, B. Kottwitz, W. Kuchen, Phosphorus Sulfur Relat.
Elem. 1986, 26, 307; b) M. K. W. Choi, H. S. He, P. H. Toy, J. Org.
Chem. 2003, 68, 9831.
[15] Selected physical data: 9: 31P{1H} NMR (80.9 MHz, 258C,
1
CDCl3): d = 14.6 ppm; H NMR (500 MHz, 258C, CDCl3): d =
Angew. Chem. Int. Ed. 2004, 43, 6197 –6201
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6201