a large excess of anilines: [aniline] = 0.1–0.3 M; [substrate] = 5 ×
10−3 and 1 × 10−3 M for 1 and 2, respectively.
7 S. B. Hong and F. M. Raushel, Biochemistry, 1996, 35, 10904.
8 (a) I. Onyido, K. Swierczek, J. Purcell and A. C. Hengge, J. Am. Chem.
Soc., 2005, 127, 7703; (b) K. M. Holtz, I. E. Catrina, A. C. Hengge
and E. R. Kantrowitz, Biochemistry, 2000, 39, 9451; (c) Y. Liu, B. A.
Gregersen, A. C. Hengge and D. M. York, Biochemistry, 2006, 45,
10043; (d) R. J. Hondal, K. S. Bruzik, Z. Zhao and M. D. Tsai, J. Am.
Chem. Soc., 1997, 119, 5477; (e) B. A. Gregersen, X. Lopez and D. M.
York, J. Am. Chem. Soc., 2003, 125, 7178; (f) M. Oivanen, M. Ora and
H. Lonnberg, Collect. Czech. Chem. Commun., 1996, 61, S1.
9 M. Charton, Prog. Phys. Org. Chem., 1987, 16, 287.
Conclusions
Partial participation of a frontside attack concerted mechanism
through a hydrogen-bonded four-center-type TS I, as well as in
the anilinolysis of 4 and 4ꢀ,3c is proposed for the aminolysis of
ethyl phenyl chloro (1)◦and chlorothio (2) phosphates with anilines
in acetonitrile at 55.0 C. This proposal is on the basis of (i) the
negative qXY value, qXY (1) = −0.60 and qXY (2) = −0.28, (ii) the
primary kinetic isotope effects, kH/kD (1) = 1.07–1.80 and kH/kD
(2) = 1.06–1.27, (iii) steric inhibition of backside nucleophilic
attack, supported by the theoretical calculation results, and
(iv) small DH‡ with large negative DS‡ values.
10 W. J. Hehre, L. Random, P. V. R. Schleyer and J. A. Pople, in Ab Initio
Molecular Orbital Theory, Wiley, New York, 1986, ch. 4.
11 (a) I. Lee, H. J. Koh, B. S. Lee and H. W. Lee, J. Chem. Soc., Chem.
Commun., 1990, 335; (b) L. Melander and W. H. Saunders, Jr., in
Reaction Rates of Isotopic Molecules, Wiley, New York, 1981; (c) S. B.
Kaldor and W. H. Saunders Jr., J. Chem. Phys., 1978, 68, 2509; (d) C. C.
Swain and E. E. Pegues, J. Am. Chem. Soc., 1958, 80, 812; (e) H. Kwart,
Acc. Chem. Res., 1982, 15, 401; (f) H. Kwart, M. W. Brechbid, R. M.
Acheson and D. C. Ward, J. Am. Chem. Soc., 1982, 104, 4671.
12 (a) I. Onyido, K. Albright and E. Buncel, Org. Biomol. Chem., 2005,
3, 1468; (b) E. J. Dunn and E. Buncel, Can. J. Chem., 1989, 67, 1440;
(c) E. J. Dunn, R. T. Moir, E. Buncel, J. G. Purdon and R. A. B.
Bannard, Can. J. Chem., 1990, 68, 1837; (d) E. Buncel, K. G. Albright
and I. Onyido, Org. Biomol. Chem., 2004, 2, 601.
Acknowledgements
This work was supported by a grant from KOSEF of Korea (R01–
2004-000-10279-0).
13 The kH/kD (=1.42–1.82) values in 6 are somewhat larger than those
of other phosphoryl and thiophosphoryl transfers in Table 3, so the
“major” participation of the frontside nucleophilic attack may be
acceptable.
References and notes
14 The methyl group rotation barrier is known to be ca. 3 kcal mol−1
Y. Xue, M. S. Pavlova, Y. E. Ryabov, B. Reif and N. R. Skrynnikov,
J. Am. Chem. Soc., 2007, 129, 6827. The calculated (RHF/6-31G* level
of theory) ethyl group rotation barriers of unsubstituted substrates in
the gas phase are 6.2 (1) and 5.6 kcal mol−1 (2) when the remaining
part except the ethyl group is fixed, but 3.1 (1) and 3.4 kcal mol−1 (2)
when the conformations are changed with the ethyl group rotations.
These results may show that the free rotation of ethyl group is very fast.
Detailed data are available in the ESI.
1 (a) Handbook of Organophosphorus Chemistry, ed. R. Engel, Marcel
Dekker Inc., New York, 1992, p. 465; (b) M. Kamiya, K. Nakamura
and C. Sasaki, Chemosphere, 1995, 30, 653; (c) M. Adler, J. D.
Nicholson, D. F. Starks, C. T. Kane, F. Cornille and B. E. Hackley,
Appl. Toxicol., 1999, 19, S5; (d) L. D. Quin and G. S. Quin, in A Guide
to Organophosphorus Chemistry, Wiley, New York, 2000, ch. 11; (e) I. H.
Um, S. E. Jeon, M. H. Baek and H. R. Park, Chem. Commun., 2003,
24, 3016; (f) V. Kabra, S. Ojha, P. Kaushik and A. Meel, Phosphorus,
Sulfur Silicon Relat. Elem., 2006, 181, 2337.
2 (a) R. F. Hudson, in Structure and Mechanism in Organophosphorus
Chemistry, Academic Press, London, 1965, ch. 3; (b) A. J. Kirby and
A. G. Varvoglis, J. Am. Chem. Soc., 1967, 89, 415; (c) F. H. Westheimer,
Acc. Chem. Res., 1968, 1, 70; (d) C. R. Hall and T. D. Inch, Tetrahedron,
1980, 36, 2059; (e) G. R. J. Thatcher, Adv. Phys. Org. Chem., 1989, 25,
99; (f) A. Williams, in Concerted Organic and Bio-organic Mechanisms,
CRC Press, Boca Raton, 2000, ch. 6; (g) A. Williams, in Free Energy
Relationships in Organic and Bio-organic Chemistry, RSC, Cambridge,
2003; (h) A. C. Hengge, Adv. Phys. Org. Chem., 2005, 40, 49; (i) A. C.
Hengge and I. Onyido, Curr. Org. Chem., 2005, 9, 61; (j) K. C. Kumara
Swamy and N. Satish Kumar, Acc. Chem. Res., 2006, 39, 324; (k) I. H.
Um, J. Y. Hong and E. Buncel, Chem. Commun., 2001, 27; (l) F. Terrier,
A. P. Guevel, A. P. Chatrousse, G. Moutiers and E. Buncel, Chem.
Commun., 2003, 2003; (m) M. J. P. Harger, Chem. Commun., 2005,
2863.
3 Anilinolysis: (a) A. K. Guha, H. W. Lee and I. Lee, J. Chem. Soc.,
Perkin Trans. 2, 1999, 765; (b) H. W. Lee, A. K. Guha and I. Lee,
Int. J. Chem. Kinet., 2002, 34, 632; (c) M. E. U. Hoque, S. Dey, A. K.
Guha, C. K. Kim, B. S. Lee and H. W. Lee, J. Org. Chem., 2007, 72,
5493; (d) M. E. U. Hoque and H. W. Lee, Bull. Korean Chem. Soc.,
2007, 28, 936; (e) Pyridinolysis: A. K. Guha, H. W. Lee and I. Lee,
J. Org. Chem., 2000, 65, 12; (f) H. W. Lee, A. K. Guha, C. K. Kim and
I. Lee, J. Org. Chem., 2002, 67, 2215; (g) K. K. Adhikary, H. W. Lee
and I. Lee, Bull. Korean Chem. Soc., 2003, 24, 1135; (h) Theoretical: I.
Lee, C. K. Kim, H. G. Li, C. K. Sohn, C. K. Kim, H. W. Lee and B. S.
Lee, J. Am. Chem. Soc., 2000, 122, 11162.
15 The calculated (RHF/6-31 G* level of theory) phenyl group rotation
barriers of unsubstituted substrates in the gas phase are 1.6 (3) and
2.4 kcal mol−1 (4) when the remaining part except one phenyl group
is fixed, but 2.9 (3) and 3.8 kcal mol−1 (4) when the conformations
are changed with the phenyl group rotations. The calculated phenoxy
group rotation barriers are 18.8 (3) and 45.4 kcal mol−1 (4) when the
remaining part, except one phenoxy group, is fixed. These results may
show that the free rotations of phenyl or phenoxy group are also very
fast. Detailed data is available in the ESI. House, and his coworkers
reported the rotation barriers of 1,8-diarylanthracene derivatives by
variable temperature NMR as 5.3–10.4 kcal mol−1 (H. O. House, J. A.
Hrabie and D. VanDerveer, J. Org. Chem., 1986, 51, 921), and Mazzanti
and his coworkers reported the rotation barriers of ca. 16 kcal mol−1 by
using MMFF force field (L. Lunazzi, M. Mancinelli and A. Mazzanti,
J. Org. Chem., 2007, 72, 5391).
16 (a) A. Williams, J. Am. Chem. Soc., 1985, 107, 6335; (b) M. T. Skoog
and W. P. Jencks, J. Am. Chem. Soc., 1983, 105, 3356; (c) N. Bourne and
A. Williams, J. Am. Chem. Soc., 1984, 106, 7591; (d) M. T. Skoog and
W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 7597; (e) W. P. Jencks, M. T.
Haber, D. Herschlag and K. L. Nazaretian, J. Am. Chem. Soc., 1986,
108, 479; (f) D. Herschlag and W. P. Jencks, J. Am. Chem. Soc., 1989,
111, 7587; (g) S. A. Ba-Saif, M. A. Waring and A. Williams, J. Am.
Chem. Soc., 1990, 112, 8115; (h) S. A. Ba-Saif, M. A. Waring and A.
Williams, J. Chem. Soc., Perkin Trans. 2, 1991, 1653; (i) J. E. Omakor,
I. Onyido, G. W. vanLoon and E. Buncel, J. Chem. Soc., Perkin Trans.
2, 2001, 324; (j) S. A. Khan and A. J. Kirby, J. Chem. Soc. B, 1970,
1172; (k) A. J. Kirby and M. J. Younas, J. Chem. Soc. B, 1970, 1165;
(l) A. J. Kirby and A. G. Varvoglis, J. Chem. Soc. B, 1968, 135; (m) R. A.
Lazarus, P. A. Benkovic and S. J. Benkovik, J. Chem. Soc., Perkin Trans.
2, 1980, 373.
4 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
5 A. Streitwieser, Jr. and C. H. Heathcock, in Introduction to Organic
Chemistry, Macmillan Publishing Co., New York, 3rd edn, 1989,
p. 693.
6 T. Fanni, K. Taira, D. G. Gorenstein, R. Vaidynathaswamy and J. G.
Verkada, J. Am. Chem. Soc., 1986, 108, 6311.
17 (a) I. Lee, Chem. Soc. Rev., 1990, 19, 317; (b) I. Lee, Adv. Phys. Org.
Chem., 1992, 27, 57; (c) I. Lee and H. W. Lee, Collect. Czech. Chem.
Commun., 1999, 64, 1529.
3950 | Org. Biomol. Chem., 2007, 5, 3944–3950
This journal is
The Royal Society of Chemistry 2007
©