Communication
ChemComm
former. Coupled with this is the fact that the U–C bond Notes and references
distance is 0.12 to 0.15 Å longer than the U–N bond distance
1 Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC
showing that the U is interacting more strongly with the
isocyanide than with the cyanide. In addition, the positive
charge on the U (Supporting material) in the isocyanides is
larger than on the cynanides except for n = 1 where they are
comparable. Thus there is more negative charge on the NC in the
isocyanides than on the CN in the cyanides. The isocyanides are
highly polarized with a charge of about À1.0 e on the N and a
positive charge of 0.28 to 0.37 on the C. In contrast, the charges
on the C and N are both about equal and negative for the
cyanides. Thus the electrostatic and dipolar interactions are
larger in the isocyanides than in the cyanides. As a consequence,
the isocyanide bonding interactions are larger than in the
cyanides and the isocyanides are more stable with shorter U–N
bond lengths and longer NC bond distances. The prior results2–4
are focused on the addition of CNÀ/NCÀ to U(VI) in contrast to
the current work which focuses on the addition of CNÀ/NCÀ to
U(I) to U(IV) with no other ligands present. The differing results
for whether isocyanide or cyanide bonding to U is preferred
clearly depend on the charge on the U and the nature of any
other ligands that are present.
The laser ablated uranium atom reaction with cyanogen
during condensation with excess argon at 4 K produces three
major products which are identified as the isocyanides UNC,
U(NC)2 and U(NC)4 from experimental mixed isotopic spectra,
the spectral region of the absorptions, and B3LYP product
energy and frequency calculations. The analysis of the charges
and the geometries shows that the isocyanides bond more
strongly to the U in the +I to +IV oxidation states than the
cyanides when no other ligands are present.
Press, Taylor and Francis Group, 2007.
¨
2 M. Straka, M. Patzschke and P. Pyykko, Theor. Chem. Acc., 2003, 109,
332–340.
3 C. Clavaguera-Sarrio, S. Hoyau, N. Ismail and C. J. Marsden, J. Phys.
Chem. A, 2003, 107, 4515–4525.
4 J. L. Sonnenberg, P. J. Hay, R. L. Martin and B. E. Bursten, Inorg.
Chem., 2005, 44, 2255–2262.
´
5 J.-C. Berthet, P. Thuery and M. Ephritikhine, Chem. Commun., 2007,
604–606.
´
´
6 J. Maynadie, N. Barros, J. C. Berthet, P. Thuery, L. Maron and
M. Ephritikhine, Angew. Chem., Int. Ed., 2007, 46, 2010–2012.
´
7 J.-C. Berthet, P. Thuery and M. Ephritikhine, Organometallics, 2008,
27, 1664–1666.
8 H. G. Cho and L. Andrews, Organometallics, 2012, 31, 535–544.
9 M. E Jacox and W. E. Thompson, J. Chem. Phys., 2007, 126, 054308.
10 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; (b) C. Lee,
W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys.,
1988, 37, 785–789.
11 R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys.,
1994, 96, 6796–6806.
html; (b) X. Cao, M. Dolg and H. Stoll, J. Chem. Phys., 2003, 118,
487–496; (c) X. Cao and M. Dolg, THEOCHEM, 2004, 673, 203–209.
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark,
J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian
09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
14 F. Weinhold and C. R. Landis, Valency and Bonding: A Natural Orbital
Perspective, Cambridge University Press, Cambridge, UK, 2005;
A. E. Reed, L. Curtiss and F. Weinhold, Chem. Rev., 1988, 88,
899–926; E. D. Glendening, C. R. Landis and F. Weinhold,
J. Comput. Chem., 2013, 34, 1429–1437; E. D. Glendening,
J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann,
C. M. Morales, C. R. Landis and F. Weinhold, NBO6 program,
Theoretical Chemistry Institute, University of Wisconsin, Madison,
We gratefully acknowledge financial support from DOE
Grant No. DE-SC0001034 to LA. DAD acknowledges the Department
of Energy, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences, Heavy Element Program for support
via a subcontract from Argonne National Laboratory. DAD also
thanks the Robert Ramsay Chair Endowment, University of
Alabama, for support.
3902 | Chem. Commun., 2015, 51, 3899--3902
This journal is ©The Royal Society of Chemistry 2015