142 Organometallics, Vol. 24, No. 1, 2005
Lee et al.
29 mmol), and MeI (208 mg, 1.49 mmol) in CH2Cl2 (15 mL)
was added 1a (302 mg, 2.9 mmol) by a syringe. The reaction
mixture was stirred for 18 h at room temperature, and the
solvent was removed under vacuum. The residue was extracted
into 20 mL of CH2Cl2, which was filtered to remove organo-
metallic compounds, salt, and K2CO3. The solution was dried
under vacuum and the residue purified by column chroma-
tography eluted by ether/hexane (1:9). The solution was dried
under vacuum, and the major product was identified as 6a
(226 mg, 75% yield). Minor products 7a and 4a are identified
by NMR and are not isolated. Spectroscopic data for 6a: 1H
NMR (CDCl3): δ 7.45-7.38, 7.35-7.29 (m, Ph, 10H), 7.05 (d,
127.1, 126.8, 125.8 (q, JFC ) 3.7 Hz), 125.4 (q, JFC ) 3.7 Hz).
MS (FAB, m/z): 340.0 (M+).
Compound 6h (55 mg) was synthesized from 2 (40 mg, 0.058
mmol), K2CO3 (1.6 g, 11.6 mmol), CH2Cl2 (5 mL), MeI (492
mg, 3.48 mmol), and 1h (142 mg, 1.16 mmol) in 39% yield.
Spectroscopic data for 6h: 1H NMR (CDCl3): δ 7.44-7.34 (m,
3
Ph, 4H), 7.04∼6.94 (m, Ph, 4H), 7.00 (d, dCH, JH-H ) 16.2
Hz), 6.28 (d, dCH, 3JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 140.0
(s, -CdC-Ar), 107.7 (s, -CdC-Ar), 90.1 (s, Ar-CtC-), 88.3
1
1
(s, Ar-CtC-), 164.6 (d, JF-C ) 36.6 Hz), 161.3 (d, JF-C
)
3
37.6 Hz), 133.4 (d, JF-C ) 8.3 Hz), 132.5 (d, JF-C ) 3.3 Hz),
3
128.0 (d, JF-C ) 8.2 Hz), 119.5 (d, JF-C ) 3.5 Hz), 115.9 (d,
2JF-C ) 21.8 Hz), 115.8 (d, JF-C ) 22.0 Hz). MS (FAB, m/z):
2
3
3
dCH, JH-H ) 16.2 Hz), 6.39 (d, dCH, JH-H ) 16.2 Hz). 13C
NMR (CDCl3): δ 141.2 (s, C-Ar), 108.1 (s, -CdC-Ar), 91.7
(s, Ar-CtC-), 88.9 (s, Ar-CtC-), 136.3, 131.5, 128.7, 128.6,
128.3, 128.1, 126.3, 123.4 (all singlet, phenyl). MS (FAB,
m/z): 204.1 (M+).
240.0 (M+).
Compound 6i (369.2 mg) was prepared from 2 (20 mg, 0.029
mmol), K2CO3 (3.2 g, 23.2 mmol), CH2Cl2 (10 mL), 1i (420 mg,
2.32 mmol), and MeI (83 mg, 0.58 mmol) in 88% yield.
3
Spectroscopic data for 6i: 1H NMR (CDCl3): δ 7.47 (d, JH-H
Dimerization of 1b to 6b. A similar reaction using 2 (20
mg, 0.029 mmol), K2CO3 (800 mg, 5.8 mmol), THF (10 mL),
HCtC(p-C6H4NO2) (1b, 85 mg, 0.58 mmol), and MeI (246 mg,
1.74 mmol) gave a mixture of 6b, 7b, and 4b in a 60:15:25
ratio. Compound 6b (44.2 mg) was obtained in 52% isolated
yield. Spectroscopic data for 6b: 1H NMR (CDCl3): δ 8.23 (d,
3JH-H ) 8.7 Hz), 8.22 (d, 3JH-H ) 8.7 Hz), 7.62 (d, 3JH-H ) 8.7
Hz), 7.58 (d, 3JH-H ) 8.7 Hz), 7.17 (d, dCH, 3JH-H ) 16.2 Hz),
6.56 (d, dCH, 3JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 142.5 (s,
-CdC-Ar), 112.5 (s, -CdC-Ar), 93.5 (s, Ar-CtC-), 92.7 (s,
Ar-CtC-), 148.4, 147.8 141.1, 132.9, 130.2, 127.6, 124.8,
124.3 (all singlet, phenyl). MS (FAB, m/z): 294.0 (M+).
3
3
) 8.5 Hz), 7.46 (d, JH-H ) 8.5 Hz), 7.32 (d, JH-H ) 8.0 Hz),
7.28 (d, 3JH-H ) 8.0 Hz), 6.99 (d, dCH, 3JH-H ) 16.2 Hz), 6.36
(d, dCH, JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 140.3 (s,
3
-CdC-Ar), 108.6 (s, -CdC-Ar), 91.2 (s, Ar-CtC-), 89.7 (s,
Ar-CtC-), 135.1, 132.9, 131.9, 131.6, 127.7, 122.7, 122.6,
122.2 (all singlet, phenyl). MS (FAB, m/z): 362.9 (M+ + 1).
Compound 6j (254 mg) was prepared from 2 (10 mg, 0.0145
mmol), K2CO3 (2 g, 14.5 mmol), CH2Cl2 (5 mL), HCtC(p-C6H4I)
1j (330 mg, 1.45 mmol), and MeI (20 mg, 0.145 mmol) in 77%
yield. Spectroscopic data for 6j: 1H NMR (CDCl3): δ 7.67 (d,
3JH-H ) 8.4 Hz), 7.66 (d, 3JH-H ) 8.4 Hz), 7.17 (d, 3JH-H ) 8.4
Hz), 7.14 (d, 3JH-H ) 8.4 Hz), 6.96 (d, dCH, 3JH-H ) 16.2 Hz),
6.36 (d, dCH, 3JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 140.5 (s,
-CdC-Ar), 108.7 (s, -CdC-Ar), 91.5 (s, Ar-CtC-), 90.0 (s,
Ar-CtC-), 137.9, 137.6, 135.6, 132.9, 127.9, 122.7, 94.3, 94.2
(all singlet, phenyl). MS (FAB, m/z): 455.8 (M+).
A similar reaction using 2 (10 mg, 0.0145 mmol), K2CO3 (2.0
g, 14.5 mmol), CH2Cl2 (5 mL), 1e (184 mg, 1.45 mmol), and
MeI (20 mg, 0.145 mmol) gave 6e (99 mg) in 54% yield.
Spectroscopic data for 6e: 1H NMR (CDCl3): δ 7.63 (d, 3JH-H
3
3
) 6.2 Hz), 7.62 (d, JH-H ) 6.2 Hz), 7.54 (d, JH-H ) 8.5 Hz),
Compound 6c (44 mg) was prepared from 2a (20 mg, 0.029
mmol), K2CO3 (800 mg, 5.8 mmol), THF (10 mL), 1c (74 mg,
0.585 mmol), and MeI (166 mg, 1.16 mmol) in 60% yield.
Spectroscopic data for 6c: 1H NMR (CDCl3): δ 10.0 (s, COH,
1H), 9.99 (s, COH, 1 H), 7.87 (d, 3JH-H ) 8.1 Hz), 7.86 (d, 3JH-H
7.51 (d, 3JH-H ) 8.5 Hz), 7.08 (d, dCH, 3JH-H ) 16.2 Hz), 6.50
(d, dCH, JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 140.7 (s,
3
-CdC-Ar), 111.1 (s, -CdC-Ar), 92.2 (s, Ar-CtC-), 92.0 (s,
Ar-CtC-), 118.5 (CN), 118.3 (CN), 140.1, 133.0, 132.6, 132.2,
132.1, 132.0, 127.2, 126.8, 112.1, 111.8 (all singlet, phenyl).
MS (FAB, m/z): 255.2 (M+ + 1).
3
3
) 8.1 Hz), 7.62 (d, JH-H ) 8.4 Hz), 7.58 (d, JH-H ) 8.4 Hz),
3
3
7.14 (d, dCH, JH-H ) 16.2 Hz), 6.56 (d, dCH, JH-H ) 16.2
Hz). 13C NMR (CDCl3): δ 141.7 (s, -CdC-Ar), 111.3 (s, -Cd
C-Ar), 92.7 (s, Ar-CtC),92.3 (s, Ar-CtC-), 191.4 (s, COH),
191.3 (s, COH), 141.1, 136.3, 135.6, 132.1, 130.2, 129.8, 129.6,
126.9 (all singlet, phenyl). MS (FAB, m/z): 261.1 (M+ + 1).
Compound 7k (176 mg) was prepared in 72% yield from 2
(20 mg, 0.029 mmol), K2CO3 (1.6 g, 11.6 mmol), CH2Cl2 (5 mL),
1k (245 mg, 2.9 mmol), and MeI (1.23 g, 8.7 mmol). Spectro-
Compound 6d (63 mg) was obtained from 2 (20 mg, 0.029
mmol), MeONa (156 mg, 2.9 mmol), THF (10 mL), MeI (250
mg, 1.74 mmol), and 1d (70 mg, 0.58 mmol) in 90% yield.
Spectroscopic data for 6d: 1H NMR (CDCl3): δ 7.36 (d, 3JH-H
) 8.0 Hz), 7.32 (d, 3JH-H ) 8.0 Hz), 7.15 (d, 3JH-H ) 7.75 Hz),
3
3
7.13 (d, JH-H ) 7.75 Hz), 7.00 (d, dCH, JH-H ) 16.2 Hz),
6.33 (d, dCH, JH-H ) 16.2 Hz), 2.34 (s, CH3, 6H). 13C NMR
3
(CDCl3): δ 140.9 (s, -CdC-Ar), 107.2 (s, -CdC-Ar), 91.6
(s, Ar-CtC-), 88.4 (s, Ar-CtC-), 21.5 (s, CH3), 21.3 (s, CH3),
138.6, 138.2, 133.7, 131.6, 129.4, 129.1, 126.2, 120.4, 119.4 (all
singlet, phenyl). MS (FAB, m/z): 232.1 (M+).
2
scopic data for 7k: 1H NMR (CDCl3): δ 5.18 (d, JH-H ) 2.06
2
3
Hz), 5.01 (d, JH-H ) 2.06 Hz), 2.28 (d, JH-H ) 6.72 Hz, 2H),
3
2.09 (d, JH-H ) 7.44 Hz, 2H), 1.50-1.27 (m, 8H), 0.93-0.84
(m, 6H). MS (FAB, m/z): 164.0 (M+).
Compound 6f (172 mg) was obtained from 2 (10 mg, 0.0145
mmol), MeONa (391 mg, 7.25 mmol), CH2Cl2 (5 mL), 1f (210
mg, 1.45 mmol), and MeI (20 mg, 0.145 mmol) in 82% yield.
Preparation of 8a. A flask was charged with 2 (20 mg,
0.029 mmol), K2CO3 (4.0 g, 29 mmol), and MeOH (10 mL), and
then MeI (40 mg, 0.29 mmol) and 1a (302 mg, 2.9 mmol) were
added by a syringe. The reaction mixture was stirred at room
temperature, and the solvent was removed under vacuum. The
residue was extracted into 20 mL of CH2Cl2, which was filtered
to remove organometallic compounds, salt, and K2CO3. The
solution was dried under vacuum and the residue purified by
column chromatography eluted by ether/hexane (1:9). The
solution was dried under vacuum, and the major product was
identified as 8a (190 mg) in 63% yield. Spectroscopic data for
3
Spectroscopic data for 6f: 1H NMR (CDCl3): δ 7.33 (d, JH-H
3
3
) 9.2 Hz), 7.30 (d, JH-H ) 9.2 Hz), 6.67 (d, JH-H ) 9.1 Hz),
3
3
6.64 (d, JH-H ) 9.1 Hz), 6.90 (d, JH-H ) 16.2 Hz), 6.18 (d,
3JH-H ) 16.2 Hz). 13C NMR (CDCl3): δ 139.8 (s, -CdC-Ar),
103.8 (s, -CdC-Ar), 91.5 (s, Ar-CtC-), 87.8 (s, Ar-
CtC-), 40.3 (NMe2), 40.2 (NMe2), 150.4, 149.8, 139.8, 132.4,
127.3, 112.2, 111.9, 110.8 (all singlet, phenyl). MS (FAB,
m/z): 290.1 (M+).
3
8a: 1H NMR (CDCl3): δ 7.93 (d, JH-H ) 8.7 Hz, 2 H), 7.48
Compound 6g (182.7 mg) was prepared from 2 (40 mg, 0.058
mmol), K2CO3 (1.6 g, 11.6 mmol), THF (10 mL), MeI (492 mg,
3.48 mmol), and 1g (203 mg, 1.16 mmol) in 90% yield.
Spectroscopic data for 6g: 1H NMR (CDCl3): δ 7.68-7.46 (m,
3
(m, Ph, 2 H), 7.46-7.00 (m, Ph, 5 H), 6.71 (d, JH-H ) 12.0
Hz, dCH), 5.93 (d, 3JH-H ) 12.0 Hz, dCH). 13C NMR (CDCl3):
δ 141.8 (s, CdCAr), 108.0 (s, CdCAr), 96.4 (s, ArCtC), 88.8
(s, ArCtC), 139.3, 137.1, 132.0, 129.4, 129.0, 129.0, 128.9,
128.8 (all singlet, phenyl). MS (FAB, m/z): 204.0 (M+).
Using the same procedure compound 8e (151 mg) was
obtained in 82% yield from 1e (184 mg, 1.45 mmol). Spectro-
3
3
phenyl, 8H), 7.11 (d, JH-H ) 16.2 Hz), 6.47 (d, JH-H ) 16.2
Hz). 13C NMR (CDCl3): δ 140.1 (s, -CdC-Ar), 110.2 (s,
-CdC-Ar), 91.5 (s, Ar-CtC-), 90.5 (s, Ar-CtC-), 139.4,
137.0, 134.2, 132.0, 131.8, 130.8, 130.3, 129.9, 129.7, 128.4,