4500
J. S. Yadav et al. / Tetrahedron Letters 49 (2008) 4498–4500
Acknowledgment
O
O
R'
O
Amberlyst-15
CH2Cl2, r.t.
R
R'
R'
HCHO
R
PVM thanks CSIR, New Delhi, for the award of fellowship.
References and notes
R
+
+
O
3 major
4 minor
1. Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125.
Scheme 2.
2. Dimmock, J. R.; Elias, D. W.; Beazel, M. A.; Kandepu, N. M. Curr. Med. Chem.
1999, 6, 1125.
3. (a) Bhat, B. A.; Dhar, K. L.; Puri, S. C.; Saxena, A. K.; Shanmugavel, M.; Qazi, G. N.
Bioorg. Med. Chem. Lett. 2005, 15, 3177; (b) Wang, S.; Yu, G.; Lu, J.; Xiao, K.; Hu,
Y.; Hu, H. Synthesis 2003, 487; (c) Wei, X.; Fang, J.; Hu, Y.; Hu, H. Synthesis 1992,
1205.
4. (a) Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem.
Soc. 2007, 129, 12902; (b) Petrov, O.; Ivanova, Y.; Gerova, M. Catal. Commun.
2008, 9, 315 and references cited therein.
H
Ph
D
+
H
O
O
Ph
D
H
+
5. (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806; (b)
Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687; (c) Tzalis, D.;
Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 1463.
6. Hayashi, A.; Yamaguchi, M.; Hirama, M. Synlett 1995, 195 and references cited
therein.
Oxete intermediate
+
H
H
O
Ph
D
7. (a) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2007, 9, 3901; (b) Yang,
F.; Xi, P.; Yang, L.; Lan, J.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 5457; (c)
Yamashita, M.; Yamada, K.; Tomioka, K. Adv. Synth. Catal. 2005, 347, 1649.
8. (a) Viswanathan, G. S.; Li, C.-J. Tetrahedron Lett. 2002, 43, 1613; (b) Curini, M.;
Epifano, F.; Maltese, F.; Rosati, O. Synlett 2003, 552; (c) Xu, B.; Shi, M. Synlett
2003, 1639.
Scheme 3.
hyde, the yield is very low (35%) over a long reaction time (24 h).
However, both aliphatic and aromatic alkynes underwent facile
9. Trost, B. M.; Jonasson, C.; Wuchrer, M. J. Am. Chem. Soc. 2001, 123, 12736.
10. (a) Yu, C.-M.; Kim, Y.-M.; Kim, J. M. Synlett 2003, 1518; (b) Miranda, P. O.;
Ramirez, M. A.; Padron, J. I.; Martin, V. S. Tetrahedron Lett. 2006, 47, 283.
11. (a) Cornelis, A.; Laszlo, P. Synlett 1994, 155; (b) Sen, S. E.; Smith, S. M.; Sullivan,
K. A. Tetrahedron 1999, 55, 12657.
12. (a) Ko, S.; Yao, C. F. Tetrahedron Lett. 2006, 47, 8827; (b) Solladie-Cavallo, A.;
Choucair, E.; Balaz, M.; Lupattelli, P.; Bonini, C.; di Blasio, N. Eur. J. Org. Chem.
2006, 3007; (c) Solladie-Cavallo, A.; Lupattelli, P.; Bonini, C. J. Org. Chem. 2005,
70, 1605; (d) Vuano, B.; Pieroni, O. L. Synthesis 1999, 72; (e) Boudart, M.
Chem. Rev. 1995, 95, 661; (f) Ballini, R.; Baboni, L.; Filippone, P. Chem. Lett.
1997, 475.
coupling with aldehydes to furnish disubstituted (E)-a,b-unsatu-
rated ketones (Table 1). The cross-coupling between terminal
alkynes and paraformaldehyde gave the corresponding vinyl
ketones in good yields (Table 1, entries a–c). Surprisingly, the
cross-coupling of internal alkynes such as 1-phenylprop-1-yne,
1-phenylbut-1-yne and 1-phenylhex-1-yne with paraformalde-
hyde gave a mixture of vinyl ketone and 1,3-dioxane in a 2:1 ratio
(Scheme 2, Table 1 entries m–o).14
Both the enone and 1,3-dioxane could be separated easily by
column chromatography. In all cases, the reactions proceeded effi-
ciently in high yields at room temperature under mild conditions.
As solvent, dichloromethane gave the best results. All the products
were characterized by NMR, IR, and mass spectrometry. In the ab-
sence of acid resin, no reaction was observed between the alde-
hyde and alkyne. Furthermore, the reaction did not proceed with
other solid acids including Montmorillonite KSF and the hetero-
polyacid H3PW12O40. The catalyst could be separated easily by sim-
ple filtration, and the recovered acid resin was reused in
subsequent reactions with only a gradual decrease in activity. For
example, benzaldehyde and paraformaldehyde gave 3a in 86%,
82%, 75%, and 72% yields over four cycles. The scope and generality
of this process was illustrated with respect to various alkynes and
aldehydes, and the results are presented in Table 1.15 The probable
reaction mechanism is depicted in Scheme 3.
13. (a) Yadav, J. S.; Reddy, B. V. S.; Vishnumurthy, P. Tetrahedron Lett. 2005, 46,
1311; (b) Meshram, H. M.; Reddy, P. N.; Sadashiv, K.; Yadav, J. S. Tetrahedron
Lett. 2005, 46, 623; (c) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Niranjan, N.
J. Mol. Catal. A 2004, 210, 99; (d) Yadav, J. S.; Reddy, B. V. S.; Sunitha, V.; Reddy,
K. S.; Ramakrishna, K. V. S. Tetrahedron Lett. 2004, 45, 7947.
14. Polshettiwar, V.; Varma, R. S. J. Org. Chem. 2007, 72, 7420.
15. Experimental procedure: A mixture of aldehyde (1 mmol), alkyne (1.2 mmol),
and Amberlyst-15Ò (0.75 g) in dichloromethane (10 L) was stirred at room
temperature for the appropriate time (Table 1). After completion of the
reaction, as indicated by TLC, the reaction mixture was filtered and washed
with dichloromethane (2 Â 10 mL). The combined organic extracts were
concentrated in vacuo and the resulting product was charged on small silica
gel column and eluted with a mixture of ethyl acetate–n-hexane (1:9) to afford
pure enone. Spectral data for selected products: compound 3c: Liquid, IR (KBr):
m
3443, 3019, 2923, 1715, 1455, 1216, 1029, 757 cmÀ1 1H NMR (200 MHz,
;
CDCl3): d 7.34–7.12 (m, 5H), 6.49–6.25 (m, 2H), 5.80 (d, 1H, J = 16.2 Hz), 2.95–
2.85 (m, 4H). EIMS: m/z: 160 (M+) 105, 91, 56, 78; HRMS calcd for C11H12O:
160.2156, found: 160.2142. Compound 3g: Liquid, IR (KBr):
m 3441, 3061,
2930, 2855, 1750, 1621, 1037, 761, 753 cmÀ1 1H NMR (200 MHz, CDCl3): d
;
7.85 (d, 2H, J = 7.5 Hz), 7.55–7.41 (m, 3H), 6.98 (d, 1H, J = 6.9 Hz), 2.30–2.20 (m,
2H), 1.75–1.32 (m, 10H); EIMS:m/z: 202 (M+) 131, 105, 77; HRMS calcd for
To realize the reaction mechanism, we have carried out the
reaction between deuterated phenylacetylene and cyclohexane-
carboxaldehyde. As shown in Scheme 3, no loss of deuterium label
was observed in the product. This clearly indicates that the reac-
tion proceeds via cyclic oxete intermediate as has been reported
by Yamaguchi and co-workers.6
C
14H18O: 202.2963, found: 202.2951. Compound 3j: Liquid, IR (KBr):
m 3423,
3058, 2924, 2850, 1891, 1657, 1597, 1255, 719 cmÀ1 1H NMR (200 MHz,
;
CDCl3): d 8.20 (d, 2H, J = 8.7 Hz), 7.80 (d, 1H, J = 16.3 Hz), 7.60–7.25 (m, 5H),
7.20 (d, 1H, J = 16.3 Hz), 6.95 (d, 2H, J = 8.7 Hz), 3.94 (s, 3H); EIMS: m/z: 238
(M+) 161, 131, 105, 118. 77; HRMS calcd for C16H14O2: 238.2859, found:
238.2839. Compound 3o: Liquid, IR (KBr):
m 3453, 2957, 2868, 1740, 1659,
1076, 753 cmÀ1 1H NMR (200 MHz, CDCl3): d 7.55 (d, 2H, J = 7.9 Hz), 7.55–7.32
;
(m, 3H), 5.72 (s, 1H), 5.25 (s, 1H), 2.45 (t, 2H, J = 7.1 Hz), 1.31–1.55 (m, 4H), 0.95
In summary, we have described a simple, convenient and me-
(t, 3H, J = 6.7 Hz); EIMS: m/z: 188 (M+) 145, 105, 77, 41; HRMS calcd for
tal-free protocol for the preparation of
a,b-unsaturated ketones
C
13H16O: 188.2694, found: 188.2682. Compound 4o: Liquid, IR (KBr):
m 3496,
2934, 2870, 1780, 1696, 1030, 770 cmÀ1 1H NMR (200 MHz, CDCl3): d 7.65 (d,
;
from alkynes and aldehydes using Amberlyst-15Ò as a novel pro-
moter. In addition to its simplicity and mild reaction conditions,
this method provides high yields of products in short reaction
times with high selectivity. The use of an inexpensive and recycl-
able acid resin makes this method simple, convenient, and
economically viable.
2H, J = 7.9 Hz), 7.55–7.35 (m, 3H), 4.75 (s, 2H), 4.21 (d, 2 H, J = 9.5 Hz), 3.85 (d,
2H, J = 10.1 Hz), 1.85 (t, 2H, J = 7.5 Hz), 1.35–1.20 (m, 4H), 0.85 (t, 3H,
J = 7.2 Hz); EIMS: m/z:248 (M+) 192, 105, 79, 77. HRMS calcd for C15H20O3:
248.3221, found: 248.3214.