C O M M U N I C A T I O N S
8 with TMM precursor 1 provides corresponding cycloadduct 9 in
91% yield (eq 6).
In summary, we have developed a palladium-catalyzed [3 + 3]
cycloaddition of trimethylenemethane with azomethine imines to
produce hexahydropyridazine derivatives under mild conditions. The
use of substituted TMM precursors highlights the difference of this
system from previously reported [3 + 2] cycloaddition of TMMs
under palladium catalysis. We have also described that the present
[3 + 3] cycloadditions are applicable to couplings with nitrones.
Figure 1. ORTEP illustration of 3k with thermal ellipsoids drawn at the
50% probability level (hydrogen atoms on the methyl and phenyl groups
are omitted for clarity).
Acknowledgment. Support has been provided in part by a
Grant-in-Aid for Scientific Research, the Ministry of Education,
Culture, Sports, Science and Technology, Japan (21 COE on Kyoto
University Alliance for Chemistry).
Supporting Information Available: Experimental procedures and
compound characterization data (PDF) and X-ray data (CIF). This
compound 4 mainly furnished two different products, 3l and 3m,
along with a minute amount of product 3n (3l/3m/3n ) 77/20/3;
eq 4). In contrast, the use of structural isomer 5 generated 3n as
the major product with a small amount of 3l (3l/3m/3n ) 12/1/87;
eq 5). These results show that the substitution pattern of the TMM
precursor is reflected in the product distribution in the present [3
+ 3] cycloaddition with azomethine imine 2a, indicating that the
cycloaddition occurs without significant equilibration between
intermediates 6 and 7 (Scheme 1). This observation strikingly
contrasts to the palladium-catalyzed [3 + 2] cycloadditions of 4 or
5 with electron-deficient olefins described by Trost, which pref-
erentially afford five-membered cyclic compounds derived from
intermediate 7 regardless of the starting TMM precursor (4 or 5)
due to the fast equilibration between 6 and 7 prior to the
cycloaddition.13
References
(1) (a) Dennis, N. Org. React. Mech. 2004, 499. (b) Fringuelli, F.; Taticchi,
A. The Diels-Alder Reaction: Selected Practical Methods; John Wiley
& Sons: Chichester, U.K., 2002. (c) Fru¨hauf, H.-W. Chem. ReV. 1997,
97, 523. (d) Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49.
(2) (a) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741.
(b) Varela, J. A.; Saa´, C. Chem. ReV. 2003, 103, 3787. (c) Saito, S.;
Yamamoto, Y. Chem. ReV. 2000, 100, 2901.
(3) For reviews on formal [3 + 3] cycloadditions, see: (a) Hsung, R. P.;
Wei, L.-L.; Sklenicka, H. M.; Shen, H. C.; McLaughlin, M. J.; Zehnder,
L. R. Trends Heterocycl. Chem. 2001, 7, 1. (b) Harrity, J. P. A.; Provoost,
O. Org. Biomol. Chem. 2005, 3, 1349. See also: (c) van der Louw, J.;
van der Baan, J. L.; Out, G. J. J.; de Kanter, F. J. J.; Bickelhaupt, F.;
Klumpp, G. W. Tetrahedron 1992, 48, 9901. (d) Ganton, M. D.; Kerr,
M. A. J. Org. Chem. 2004, 69, 8554.
(4) (a) Huang, Y.; Lu, X. Tetrahedron Lett. 1987, 28, 6219. (b) Huang, Y.;
Lu, X. Tetrahedron Lett. 1988, 29, 5663. (c) Barluenga, J.; Toma´s, M.;
Rubio, E.; Lo´pez-Pelegr´ın, J. A.; Garc´ıa-Granda, S.; Priede, M. P. J. Am.
Chem. Soc. 1999, 121, 3065. (d) Young, I. S.; Kerr, M. A. Angew. Chem.,
Int. Ed. 2003, 42, 3023. (e) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am.
Chem. Soc. 2005, 127, 5764.
(5) (a) Bambal, R. B.; Kemmitt, R. D. W. J. Organomet. Chem. 1989, 362,
C18. (b) Hedley, S. J.; Moran, W. J.; Prenzel, A. H. G. P.; Price, D. A.;
Harrity, J. P. A. Synlett 2001, 1596. (c) Hedley, S. J.; Moran, W. J.; Price,
D. A.; Harrity, J. P. A. J. Org. Chem. 2003, 68, 4286. (d) Goodenough,
K. M.; Moran, W. J.; Raubo, P.; Harrity, J. P. A. J. Org. Chem. 2005, 70,
207.
(6) (a) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429. (b)
Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.
(7) For a review, see: Chan, D. M. T. In Cycloaddition Reactions in Organic
Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim,
Germany, 2002; p 57.
(8) For examples of [4 + 3] cycloaddition with Pd-TMM, see: (a) Trost, B.
M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109, 3483. (b) Trost, B.
M.; Schneider, S. Angew. Chem., Int. Ed. Engl. 1989, 28, 213. (c) Trost,
B. M.; Christopher, M. M. J. Am. Chem. Soc. 1993, 115, 6636. For an
example of [6 + 3] cycloaddition with Pd-TMM, see: (d) Trost, B. M.;
Seoane, P. R. J. Am. Chem. Soc. 1987, 109, 615.
Scheme 1
(9) (a) Dorn, H.; Otto, A. Chem. Ber. 1968, 101, 3287. (b) Dorn, H.; Otto,
A. Angew. Chem., Int. Ed. Engl. 1968, 7, 214.
(10) For a review, see: Schantl, J. G. Sci. Synth. 2004, 27, 731.
(11) For recent examples, see: (a) Sua´rez, A.; Downey, C. W.; Fu, G. C. J.
Am. Chem. Soc. 2005, 127, 11244. (b) Pezdirc, L.; Jovanovski, V.; Bevk,
B.; Jakse, R.; Pirc, S.; Meden, A.; Stanovnik, B.; Svete, J. Tetrahedron
2005, 61, 3977. (c) Panfil, I.; Urbanczyk-Lipkowska, Z.; Suwinska, K.;
Solecka, J.; Chmielewski, M. Tetrahedron 2002, 58, 1199.
(12) Self-dimerization of these dipoles is known: Dorn, H.; Kreher, T.
Tetrahedron Lett. 1988, 29, 2939.
(13) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, 103, 5972.
These [3 + 3] cycloaddition reactions can be extended to the
couplings with nitrones, as well. For example, a reaction of nitrone
JA061662C
9
J. AM. CHEM. SOC. VOL. 128, NO. 19, 2006 6331