Angewandte
Chemie
700 cmÀ1, 1 = 10 mm, optical path length = 0.4 mm), a mechanical
stirrer, a temperature controller, and a pressure device. In a typical
experiment, [Rh(CO)2(acac)] (0.008 g, 3.0 10À5 mol) and PPh3 (6.0
10À4 mol) of were dissolved in cyclohexane (15 mL) under argon. The
solution was brought into the autoclave and after flushing and
pressurizing with CO/H2, the HP-IR cell was placed into a Nicolet 510
FTIR spectrometer. Then the reaction mixture was heated to 808C. A
substrate or a mixture of substrates were added to the reaction
mixture from a separately pressurized reservoir by means of over-
pressure once the active catalyst, [RhH(CO)2(PPh3)2] (1), was
formed. The IR spectra were recorded while the samples were stirred.
4: A solution of [RhH(CO)(PPh3)3] (3; 0.05 g, 5.4 10À5 mol;
Strem) in [D8]toluene was prepared in a 5-mm NMR tube under
argon. The tube was placed in a NMR machine and cooled to À608C.
The NMR tube was then ejected and 3-butene-2-one (2, 5.5 mL, 6.5
10À5 mol) was added and the tube placed back in the precooled NMR
[7] a) L. A. van der Veen, M. D. K. Boele, F. R. Bregman, P. C. J.
Kamer, P. W. N. M. van Leeuwen, K. Goubitz, J. Fraanje, H.
Schenk, C. Bo, J. Am. Chem. Soc. 1998, 120, 11616; b) A.
Castellanos-Pꢂez, S. Castillꢁn, C. Claver, P. W. N. M. van Leeu-
wen, W. G. J. de Lange, Organometallics 1998, 17, 2543.
[8] a) D. Evans, G. Yagupsky, G. Wilkinson, J. Chem. Soc. A 1968,
2660; b) A. S. C. Chan, H.-S. Shieh, J. R. Hill, J. Chem. Soc.
Chem. Commun. 1983, 688.
[9] a) G. A. Slough, R. G. Bergman, C. H. Heathcock, J. Am. Chem.
Soc. 1989, 111, 938; b) G. A. Slough, R. Hayashi, J. R. Ashbaugh,
S. L. Shamblin, A. M. Aukamp, Organometallics 1994, 13, 890;
c) G. A. Slough, J. R. Ashbaugh, L. A. Zannoni, Organometal-
lics 1994, 13, 3587; d) S. Sato, I. Matsuda, Y. Izumi, Chem. Lett.
1985, 1875.
[10] The spectra were simulated using gNMR4.1; P. H. M. Budzelaar,
Ivory Soft, Cherwell Scientific Publishers, Oxford, 1999.
[11] a) J. Zhang, M. Poliakoff, M. W. George, Organometallics 2003,
22, 1612; b) K. Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169;
c) S. C. van der Slot, P. C. J. Kamer, P. W. N. M. van Leeuwen,
J. A. Iggo, B. T. Heaton, Organometallics 2001, 20, 430.
[12] a) W. M. Ress, J. D. Atwood, Organometallics 1985, 4, 402;
b) W. M. Ress, M. R. Churchil, Y.-J. Li, J. D. Atwood, Organo-
metallics 1985, 4, 1162; c) W. M. Ress, M. R. Churchil, J. C.
Fettinger, J. D. Atwood, Organometallics 1985, 4, 2179; d) M. R.
Churchil, J. C. Fettinger, W. M. Ress, J. D. Atwood, J. Organo-
met. Chem. 1986, 304, 227.
machine and the NMR spectra were recorded. E isomer (4a):
1
=
H NMR (300 MHz, C7D8, À608C): d = 1.49 (s, C(CH3), 3H), 2.15
=
=
(d, J(H,H) = 6 Hz, 3H, CH(CH3)), 3.97 (q, J(H,H) = 6 Hz, 1H,
CH(CH3)), 6.8–7.5 ppm (m, 30H, PPh3); 31P{1H} NMR (121.5 MHz,
C7D8, À608C): d = 26.74 ppm (d, J(Rh,P) = 145.00 Hz); 13C{1H} NMR
(75.4 MHz, C7D8, À608C): d = 14.95 (s, CH3), 29.21 (s, CH3), 92.15 (s,
=
1
CH), 159.03 (s, Rh-O-C), 191.46 ppm (dt, Rh-CO); Z isomer (4b):
H NMR (300 MHz, C7D8, À608C): d = 1.36 (s, 3H, C(CH3)), 1.53
=
=
=
(d, J(H,H) = 6 Hz, 3H, CH(CH3)), 4.63 (q, J(H,H) = 6 Hz, 1H,
CH(CH3)), 6.8–7.5 ppm (m, 30H, PPh3); 31P{1H} NMR (121.5 MHz,
C7D8, À608C): d = 29.99 ppm (d, J(Rh,P) = 146.25 Hz); 13C{1H} NMR
(75.4 MHz, C7D8, À608C): d = 14.29 (s, CH3), 28.95 (s, CH3), 88.17 (s,
=
CH), 160.36 (s, Rh-O-C), 191.46 ppm (dt, Rh-CO); 4a and 4b: IR
(C5H12): 1968 cmÀ1 (s).
5: First a mixture of 4 was prepared in a 5-mm NMR tube
according to the description given above. Then CO or CO/H2 was
bubbled through the solution for 6 min at À608C and the NMR
spectra were recorded. E isomer (5a): 1H NMR (300 MHz, C7D8,
=
=
À608C): d = 0.8 (d, J(H,H) = 7.2 Hz, 3H, CH(CH3)), 1.35 (s, 3H,
=
C(CH3)), 2.6 (q, J(H,H) = 7.2 Hz, 1H, CH(CH3)), 6.8–7.8 ppm (m,
1
30H, PPh3); Z isomer (5b): H NMR (300 MHz, C7D8, À608C): d =
=
=
1.28 (d, J(H,H) = 6.9 Hz, 3H, CH(CH3)), 1.50 (s, 3H, C(CH3)),
=
4.15 (q, J(H,H) = 6.9 Hz, 1H, CH(CH3)), 6.8–7.8 ppm (m, 30H,
PPh3); 5a and 5b: 31P{1H} NMR (121.5 MHz, C7D8, À608C): d = 26.15
(dd, J(Rh,P) = 132 Hz, J(P,P) = 30 Hz), 28.53 ppm (dd, J(Rh,P) =
72 Hz, J(P,P) = 30 Hz); 13C{1H} NMR (75.4 MHz, C7D8, À408C):
d = 198 (d, J(Rh,C) = 76 Hz, Rh-CO), d = 235.5 ppm (dd, J(Rh,C) =
22 Hz, J(P,C) = 80 Hz, Rh-COO); IR (C5H12): 1984 (vs), 1946 (w),
1652 cmÀ1 (w).
Received: May 13, 2003 [Z51884]
Keywords: high-pressure spectroscopy · homogeneous
.
catalysis · hydroformylation · reaction mechanisms · rhodium
[1] P. W. N. M. van Leeuwen, Appl. Catal. A 2001, 212, 61.
[2] a) P. W. N. M. van Leeuwen, C. F. Roobeek, J. Mol. Catal. 1985,
31, 345; b) A. van Rooy, J. N. H. de Bruijn, C. F. Roobeek,
P. C. J. Kamer, P. W. N. M. van Leeuwen, J. Organomet. Chem.
1996, 507, 69.
[3] K. F. Muilwijk, P. C. J. Kamer, P. W. N. M. van Leeuwen, J. Am.
Oil Chem. Soc. 1997, 74, 223.
[4] E. Billig, A. G. Abatjoglou, D. R. Bryant, R. E. Murray, J. M.
Maher (Union Carbide Corporation), US Pat. 4,717,775, 1988;
[Chem. Abstr. 1989, 109, 233177].
[5] M. Diꢀguez, C. Claver, A. M. Masdeu-Bultꢁ, A. Ruiz,
P. W. N. M. van Leeuwen, G. C. Schoemaker, Organometallics
1999, 18, 2107.
[6] J.M. Brown, A. G. Kent, J. Chem. Soc. Perkin Trans. 2 1987,
1597.
Angew. Chem. Int. Ed. 2003, 42, 4665 –4669
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 4669