74
J.-Y. Wu et al. / Journal of Molecular Structure 796 (2006) 69–75
[3] (a) N.L. Toh, M. Nagarathinam, J.J. Vittal, Angew. Chem., Int. Ed.
44 (2005) 2237;
co-workers [20]. A further weak emission band at 495 nm
for 2 may not be related to n fi p transition of the
*
(b) B. Sreenivasulu, J.J. Vittal, Angew. Chem., Int. Ed. 43 (2004)
5769.
[4] (a) G.F. Swiegers, T.J. Malefetse, Chem. Rev. 100 (2000) 3483;
(b) K. Uemura, S. Kitagawa, K. Fukui, K. Saito, J. Am. Chem. Soc.
126 (2004) 3817;
(c) C.-Y. Su, M.D. Smith, H.-C. zur Loye, Angew. Chem., Int. Ed. 42
(2003) 4085.
[5] (a) B.D. Wagner, G.J. McManus, B. Moulton, M.J. Zaworotko,
Chem. Commun. (2002) 2176;
BDC ligand but may simply arise from a charge-
transfer transition [22–24], since the free H2BDC exhibits
only one emission band located at about 390 nm
(kex = 350 nm) [23]. In the case of 3, photoluminescence
with two main peaks at 386 and 400 nm and several
shoulders in the region 450–500 nm, as well as one broad
band at 533 nm (kex = 330 nm) are observed (Fig. 7). In
comparison, the free H4btec ligand also shows similar
multiple emission bands at 360, 381, 455, and 470 nm
with shoulders at 494 and 523 nm upon excitation at
(b) E. Burkholder, V. Golub, C.J. O’Connor, J. Zubieta, Inorg.
Chem. 42 (2003) 6729;
(c) L. Carlucci, G. Ciani, D.M. Proserpio, F. Porta, Angew. Chem.,
Int. Ed. 42 (2003) 317.
320 nm, which can be attributed to n fi p transition
*
[6] (a) C.-D. Wu, W. Lin, Inorg. Chem. 44 (2005) 1178;
(b) X.-M. Chen, G.-F. Liu, Chem. Eur. J. 8 (2002) 4811;
(c) Y.-C. Yang, L.-I. Hung, S.-L. Wang, Chem. Mater. 17 (2005)
2833;
(d) Y.-C. Jiang, S.-L. Wang, S.-F. Lee, K.-H. Lii, Inorg. Chem. 42
(2003) 6154.
[7] T.-T. Yeh, J.-Y. Wu, Y.-S. Wen, Y.-H. Liu, J. Twu, Y.-T. Tao, K.-L.
Lu, Dalton Trans. (2005) 656.
[23]. This indicates that the btec ligands make a significant
contribution to fluorescent emission of 3 in addition to
that from the coordinated phen ligands. Therefore, the
emission bands for 3 are rationally assigned to the combi-
nation of strong p fi p transition of the coordinated
*
phen ligand [15,20] and weak n fi p transition of the
*
btec ligand.
[8] (a) X.-L. Wang, C. Qin, E.-B. Wang, L. Xu, Z.-M. Su, C.-W. Hu,
Angew. Chem., Int. Ed. 43 (2004) 5036;
(b) Y. Li, N. Hao, Y. Lu, E. Wang, Z. Kang, C. Hu, Inorg. Chem. 42
(2003) 3119;
4. Conclusions
(c) Y. Li, H. Zhang, E. Wang, N. Hao, C. Hu, Y. Yan, D. Hall, New
J. Chem. 26 (2002) 1619.
[9] (a) C. Mellot-Draznieks, J. Dutour, G. Ferey, Angew. Chem., Int. Ed.
43 (2004) 6290;
The synthesis of two 2D networks is described. A 1,10-
phenanthroline-chelated cadmium metal complex was
successfully used as an inorganic subunit to react with
polycarboxylate bridging ligands to form 2D coordination
polymers in high yields under mildly hydrothermal reaction
conditions.
(b) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M.
Yaghi, J. Am. Chem. Soc. 127 (2005) 1504;
(c) C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int.
Ed. 43 (2004) 1466;
(d) S. Tashiro, M. Tominaga, M. Kawano, B. Therrien, T. Ozeki,
M. Fujita, J. Am. Chem. Soc. 127 (2005) 4546;
(e) J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim,
Nature 404 (2000) 982.
Acknowledgements
[10] (a) T.-T. Luo, H.-L. Tsai, S.-L. Yang, Y.-H. Liu, R.D. Yadav, C.-C.
Su, C.-H. Ueng, L.-G. Lin, K.-L. Lu, Angew. Chem., Int. Ed. 44
(2005) 6063;
We thank Academia Sinica and the National Science
Council of Taiwan for financial support. We also express
our gratitude to Mr. Ting-Shen Kuo, National Taiwan
Normal University, for assistance with the X-ray structure
analysis.
(b) Y.-H. Liu, H.-C. Wu, H.-M. Lin, W.-H. Hou, K.-L. Lu, Chem.
Commun. (2003) 60;
(c) Y.-H. Liu, Y.-L. Lu, H.-C. Wu, J.-C. Wang, K.-L. Lu, Inorg.
Chem. 41 (2002) 2592;
(d) Y.-H. Liu, H.-L. Tsai, Y.-L. Lu, Y.-S. Wen, J.-C. Wang, K.-L.
Lu, Inorg. Chem. 40 (2001) 6426.
Appendix A. Supplementary data
[11] Y.B. Go, X. Wang, E.V. Anokhina, A.J. Jacobson, Inorg. Chem. 43
(2004) 5360.
[12] Y. Qi, Y. Wang, C. Hu, M. Cao, L. Mao, E. Wang, Inorg. Chem. 42
(2003) 8519.
[13] X.-M. Zhang, M.-L. Tong, M.-L. Gong, X.-M. Chen, Eur. J. Inorg.
Chem. (2003) 138.
Supplementary data associated with this article can be
References
[14] D. Sun, R. Cao, Y. Liang, Q. Shi, W. Su, M. Hong, J. Chem. Soc.,
Dalton Trans. (2001) 2335.
[15] X. Shi, G. Zhu, Q. Fang, G. Wu, G. Tian, R. Wang, D. Zhang, M.
Xue, S. Qiu, Eur. J. Inorg. Chem. (2004) 185.
[16] Q. Shi, R. Cao, D.-F. Sun, M.-C. Hong, Y.-C. Liang, Polyhedron 20
(2001) 3287.
[17] D.-Q. Chu, J.-Q. Xu, L.-M. Duan, T.-G. Wang, A.-Q. Tang, L. Ye,
Eur. J. Inorg. Chem. (2001) 1135.
[1] (a) J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vo¨gtle, J.-M.
Lehn, Comprehensive Supramolecular Chemistry, vol. 9, Pergamon
Press, New York, 1996;
(b) S.R. Batten, R. Robson, Angew. Chem., Int. Ed. 37 (1998) 1460;
(c) J.C. Noveron, A.M. Arif, P.J. Stang, Chem. Mater. 15 (2003) 372;
(d) D.-L. Long, A.J. Blake, N.R. Champness, C. Wilson,
[18] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[19] G.M. Sheldrick, SHELX-97 (including SHELXS and SHELXL),
University of Go¨ttingen, Go¨ttingen, Germany, 1997.
[20] X. Shi, G. Zhu, X. Wang, G. Li, Q. Fang, G. Wu, G. Tian, M.
Xue, X. Zhao, R. Wang, S. Qiu, Cryst. Growth Des. 5 (2005)
207.
M. Schro¨der, Chem. Eur. J.
[2] (a) M. Ruben, U. Ziener, J.-M. Lehn, V. Ksenofontov, P. Gutlich,
¨
8 (2002) 2026.
G.B.M. Vaughan, Chem. Eur. J. 11 (2005) 94;
(b) M.W. Hosseini, Acc. Chem. Res. 38 (2005) 313;
(c) T.J. Prior, M.J. Rosseinsky, Chem. Commun. (2001) 1222;
(d) G.R. Desiraju, Nature 412 (2001) 397.