2004, 43, 4704; (c) B. Fuentes, M. Garcıa-Melchor, A. Lledos,
´ ´
F. Maseras, J. A. Casares, G. Ujaque and P. Espinet, Chem.–Eur.
J., 2010, 16, 8596; (d) A. F. Littke, C. Dai and G. C. Fu, J. Am.
Chem. Soc., 2000, 122, 4020.
2 K. H. Dotz and J. Stendel Jr, Chem. Rev., 2009, 109, 3227.
¨
3 M. Go
Res., 2005, 38, 44.
4 I. Fernandez, M. J. Mancheno, R. Vicente, L. A. Lo
M. A. Sierra, Chem.–Eur. J., 2008, 14, 11222.
5 (a) T. Cantat, L. Ricard, P. Le Floch and N. Mezailles, Organometallics,
´
mez-Gallego, M. J. Mancheno and M. A. Sierra, Acc. Chem.
´
´
pez and
´
2006, 25, 4965; (b) C. M. Ong and D. W. Stephan, J. Am. Chem. Soc.,
1999, 121, 1483; (c) A. Kasani, R. P. K. Babu, R. McDonald and
R. G. Cavell, Angew. Chem., Int. Ed., 1999, 38, 1483;
(d) L. Orzechowski, G. Jansen and S. Harder, Angew. Chem., Int. Ed.,
2009, 48, 3825; (e) O. J. Cooper, A. J. Wooles, J. McMaster, W. Lewis,
A. J. Blake and S. T. Liddle, Angew. Chem., Int. Ed., 2010, 49, 5570.
6 For recent reviews see: H. Heuclin, M. Fustier, A. Auffrant and
Fig. 1 View of complex 7 (hydrogen atoms have been omitted for
clarity). Selected bond lengths (A) and angles (1). C(1)–P(1)
1.736(4), C(1)–P(2) 1.728(3), P(1)–S(1) 2.028(1), P(2)–S(2) 2.037(1),
C(1)–Fe(1) 2.099(3), C(1)–Fe(2) 2.082(3), Fe(1)–Fe(2) 2.5683(8),
Fe(1)–S(1) 2.380(1), Fe(2)–S(2) 2.355(1), P(1)–C(1)–P(2) 128.8(2),
C(1)–Fe(1)–C(10)–Fe(2) 0.00.
N. Mezailles, Lett. Org. Chem., 2010, 7, 596; S. T. Liddle,
´
D. P. Mills and A. J. Wooles, Chem. Soc. Rev., 2011, 40, 2164.
7 (a) R. G. Cavell, R. P. K. Babu, A. Kasani and R. McDonald,
J. Am. Chem. Soc., 1999, 121, 5805; (b) T. Cantat, L. Ricard,
is given in Fig. 1. The structure of complex 7 is similar to the one
of the cobalt complex. Complex 7 features a planar C–Fe–C–Fe
square core, each central carbon binding two iron atoms, the
geometry at the Fe atoms being distorted tetrahedral.
N. Me
8 (a) T. Cantat, F. Jaroschick, L. Ricard, F. Nief, N. Me
P. Le Floch, Chem. Commun., 2005, 5178; (b) T. Cantat,
F. Jaroschick, L. Ricard, P. Le Floch, F. Nief and N. Mezailles,
´
zailles and P. Le Floch, Organometallics, 2006, 25, 6030.
´
zailles and
´
Organometallics, 2006, 25, 1329; (c) S. T. Liddle, J. McMaster,
J. C. Green and P. L. Arnold, Chem. Commun., 2008, 1747;
(d) A. Buchard, A. Auffrant, L. Ricard, X. F. Le Goff,
R. H. Platel, C. K. Williams and P. Le Floch, Dalton Trans., 2009,
10219; (e) S. T. Liddle, D. P. Mills, B. M. Gardner, J. McMaster,
C. Jones and W. D. Woodul, Inorg. Chem., 2009, 48, 3520;
(f) D. P. Mills, O. J. Cooper, J. McMaster, W. Lewis and
S. T. Liddle, Dalton. Trans., 2009, 4547; (g) D. P. Mills,
A. J. Wooles, J. McMaster, W. Lewis, A. J. Blake and
S. T. Liddle, Organometallics, 2009, 28, 6771; (h) D. P. Mills,
L. Soutar, W. Lewis, A. J. Blake and S. T. Liddle, J. Am. Chem.
Soc., 2010, 132, 14379; (i) M. Fustier, X.-F. Le Goff, P. Le Floch and
Bond lengths in the ligand in complex 7 are similar to the
ones of complex 4 (1.736(4) and 1.728(3) A vs 1.742 and 1.728 A
for the P–C bonds). The main structural difference is the metal–
metal bond. Indeed, the Fe–Fe bond is longer by ca. 0.1 A in
complex 7 than in complex 4 (2.568 A vs 2.471 A). The Fe–Fe
bond distance is however shorter than the sum of the van der Waals
radii (2.64 A), indicative of a strong interaction. In terms of
reactivity, the Fe complex 7 does not react with carbonyl
derivatives, such as benzophenone, unlike the Sc and Zr
complexes (6 and 1).7b,8e The complex is also stable toward
weak acid sources such as CH3CN or the strongly alkylating
agent MeI, in agreement with a strong electron transfer from
the formally dianionic ligand to the metal. In line with the
apparent paramagnetic nature observed by NMR, the effective
moment was measured, using the Evans method, at 3.87 mB
(expected 4.0 mB). This value is in agreement with two Fe(II)
centers with S = 1 each.
N. Mezailles, J. Am. Chem. Soc., 2010, 132, 13108; (j) A. J. Wooles,
´
D. P. Mills, W. Lewis, A. J. Blake and S. T. Liddle, Dalton Trans.,
2010, 39, 500; (k) A. J. Wooles, O. J. Cooper, J. McMaster, W. Lewis,
A. J. Blake and S. T. Liddle, Organometallics, 2010, 29, 2315.
9 (a) T. Cantat, T. Arliguie, A. Noel, P. Thue
P. Le Floch and N. Mezailles, J. Am. Chem. Soc., 2009, 131, 963;
(b) J.-C. Tourneux, J.-C. Berthet, P. Thuery, N. Mezailles,
´
ry, M. Ephritikhine,
´
´
´
P. Le Floch and M. Ephritikhine, Dalton Trans., 2010, 39, 2494;
(c) O. J. Cooper, J. McMaster, W. Lewis, A. J. Blake and S. T. Liddle,
Dalton Trans., 2010, 39, 5074; (d) D. P. Mills, F. Moro, J. McMaster,
J. van Slageren, W. Lewis, A. J. Blake and S. T. Liddle, Nat. Chem.,
2011, 3, 454; (e) G. Ma, M. J. Ferguson, R. McDonald and
R. G. Cavell, Inorg. Chem., 2011, 50, 6500.
In conclusion, we show here for the first time that tridentate
SCS nucleophilic carbene complexes may be used as stoichiometric
carbene transfer agents in a transmetalation process. This
novel transformation does allow circumventing redox competitive
processes. As such it opens the way for the synthesis of ‘‘SCS’’
carbene complexes of oxidized and oxidizing metal centers.
The precise mechanism of this transformation is currently
being investigated using molecular modeling.
10 O. J. Cooper, D. P. Mills, J. McMaster, F. Moro, E. S. Davies,
W. Lewis, A. J. Blake and S. T. Liddle, Angew. Chem., Int. Ed.,
2011, 50, 2383.
11 J.-C. Tourneux, J.-C. Berthet, T. Cantat, P. Thue
P. Le Floch and M. Ephritikine, Organometallics, 2011, 30, 2957.
12 (a) T. Cantat, M. Demange, N. Mezailles, L. Ricard, Y. Jean and
P. Le Floch, Organometallics, 2005, 24, 4838; (b) T. Cantat,
N. Mezailles, L. Ricard, Y. Jean and P. Le Floch, Angew. Chem.,
ry, N. Mezailles,
´ ´
´
´
The authors thank the CNRS and the Ecole Polytechnique
for financial support. M. F. B. and H. H. are thankful to the
Ecole Polytechnique for fellowships.
Int. Ed., 2004, 43, 6382.
13 (a) J. H. Wengrovius, R. R. Schrock, M. R. Churchill,
J. R. Missert and W. J. Youngs, J. Am. Chem. Soc., 1980,
102, 4515; (b) R. R. Schrock, S. Rocklage, J. H. Wengrovius,
G. Rupprecht and J. Fellmann, J. Mol. Catal., 1980, 8, 73.
14 H. Heuclin, T. Cantat, X. F. Le Goff, P. Le Floch and
Notes and references
z The two substituents at the C are PR2QX (X = S, O, NR0) moieties,
and therefore the complexes cannot be called alkylidene complexes
which imply alkyl (or H) substituents. They are called here carbene
complexes, and can behave as either nucleophilic (alkylidene like
behaviour) or electrophilic complexes, depending on the associated
metal fragment. See: D. J. Mindiola, J. Scott, Nat. Chem., 2011, 3, 15.
N. Mezailles, Eur. J. Inorg. Chem., 2011, 2540.
´
15 (a) W. P. Leung, C. W. So, J. Z. Wang and T. C. W. Mak, Chem.
Commun., 2003, 248; (b) M. Fang, N. D. Jones, K. Friesen, G. Lin,
M. J. Ferguson, R. McDonald, R. Lukowski and R. G. Cavell,
Organometallics, 2009, 28, 1652.
ez, J. Garcı
´
´ ´
and J. Gimeno, J. Organomet. Chem., 2005, 690, 2087.
´
a-Alvarez and J. Gimeno, Organo-
16 (a) V. Cadierno, J. Dı
´
´
metallics, 2004, 23, 2421; (b) V. Cadierno, J. Dıez, J. Garcıa-Alvarez
1 (a) L. Xue and Z. Lin, Chem. Soc. Rev., 2010, 39, 1692;
(b) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed.,
c
3308 Chem. Commun., 2012, 48, 3306–3308
This journal is The Royal Society of Chemistry 2012