G.-B. Liang et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1903–1907
1907
7. Zander, M.; Madsbad, S.; Madsen, J. L.; Holst, J. J. The
Lancet 2002, 359, 824.
8. Ahren, B. E. Drug Discovery Today: Therapeutic Strate-
gies 2004, 1, 207.
9. Heine, R. J.; van Gaal, L. F.; Johns, D.; Mihm, M. J.;
Widel, M. H.; Brodows, R. G. Ann. Intern. Med. 2005,
143, 559.
10. Deacon, C. F.; Hughes, T. E.; Holst, J. J. Diabetes 1998,
47, 764.
11. Pederson, R. A.; White, H. A.; Schlenzig, D.; Pauly, R. P.;
McIntosh, C. H.; Demuth, H.-U. Diabetes 1998, 47, 1235.
12. Gautier, J. F.; Fetita, S.; Sobngwi, E.; Salaun-Martin, C.
Diabetes Metab. 2005, 31, 233.
13. Herman, G. A.; Zhao, P. L.; Dietrich, B.; Golor, G.;
Schrodter, A.; Keymeulen, B.; Lasseter, K. C.; Kipnes, M.
S.; Hilliard, D.; Tanen, M.; de Smet, M. Diabetologia
2004, 47, Abs. 794.
plasma concentration of 14a reached 4.4 nM, and an
uncorrected 72% inhibition of plasma DPP-4 activity
was observed,23 resulting in about a 3-fold increase in
active GLP-1 levels, and full efficacy in glucose reduc-
tion. Because 9i (mouse DPP-4 IC50 = 18 nM) and 15a
(mouse DPP-4 IC50 = 26 nM) are much less potent than
14a against mouse DPP-4, higher doses (3 mg/kg for 9i
and 1 mg/kg for 15a, respectively) have to be used to
reach maximum efficacy based on at least 80% inhibition
of plasma DPP-4. Nonetheless, all three compounds
showed good efficacy in glucose reduction, comparable
to that of sitagliptin.16 Good correlations among plasma
concentration, DPP-4 inhibition, GLP-1 elevation (data
not shown), and glucose AUC reduction strongly sug-
gest that the observed enhancement in glucose tolerance
is indeed mechanism based and mediated at least in part
by the GLP-1.
14. Ahren, B.; Landin-Olsson, M.; Jansson, P. A.; Svensson,
M.; Holmes, D.; Schweizer, A. J. Clin. Endocrinol. Metab.
2004, 89, 2078.
In summary, following the discovery of the novel b-ala-
nine-derived 1,4-diazepanone-containing DPP-4 inhibi-
tors, we have explored different substitution patterns
of the diazepanone ring through continued SAR studies.
Representative compounds, such as 1-substituted 9i,
6-substituted 14a, and 7-substituted 15a, all have good
potency against DPP-4, and good selectivity against
QPP, DPP-8, and other closely related peptidases. They
have good to excellent pharmacokinetic properties
across species from rat and dog to monkey. And they
have shown good efficacy after oral dosing in rodents
at dose levels correlated well to their intrinsic potency.
Optimization of this promising lead continues as we
try to explore specific interactions in the enzyme active
site identified by structural biology, and with input from
computer modeling.
15. Biftu, T.; Feng, D.; Qian, X.; Liang, G.-B.; Kieczykowski,
G.; Eiermann, G.; He, H.; Leiting, B.; Lyons, K.; Petrov,
A.; Sinha-Roy, R.; Zhang, B.; Scapin, G.; Patel, S.; Gao,
Y.-D.; Singh, S.; Wu, J.; Zhang, X.; Thornberry, N. A.;
Weber, A. E. Bioorg. Med. Chem. Lett. 2007, 17, 49.
16. Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher,
M. H.; He, K.; Hickey, G. J.; Kowalchick, J. E.; Leiting,
B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.;
Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R.; Wu, J.;
Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.;
Weber, A. E. J. Med. Chem. 2005, 48, 141.
1
17. (a) All new compounds were characterized by H NMR
and LC-MS prior to submission for biological evaluation;
(b) All multiple determinations of the IC50 values were
within 1.5-fold of the reported average.
18. Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel, R.
A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.;
Thornberry, N. A. Biochem. J. 2003, 371, 525.
19. Rosenblum, J. S.; Kozarich, J. W. Curr. Opin. Chem. Biol.
2003, 7, 1.
Acknowledgments
20. Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G.
J.; Beconi, M. G.; Biftu, T.; Chan, C.-C.; Edmondson, S.;
Feeney, W. P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K.
A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.;
Qian, X.; Reigle, L.; Woods, A.; Wu, J.; Zaller, D.; Zhang,
X.; Zhu, L.; Weber, A. E.; Thornberry, N. A. Diabetes
2005, 54, 2988.
21. Maes, M.-B.; Lambier, A.-M.; Gilany, K.; Senten, K.;
Van der veken, P.; Leiting, B.; Augustyns, K.; Scharpe, S.;
De Meester, I. Biochem. J. 2005, 386, 315.
We thank Dr. Phil Eskola, Regina Black, Mark Levorse,
Joe Leone, Bob Frankshun, Amanda Makarewicz,
Daniel Kim, and Dr. Derek Von Langen of Synthetic
Services Group for large scale synthetic support, and
Dr. Bernard Choi and Eric Streckfuss of Analytical Sup-
port Group for open access LC-MS service.
22. Herman, G. A.; Stevens, C.; van Dyck, K.; Bergman, A.;
Yi, B.; De Smet, M.; Snyder, K.; Hilliard, D.; Tanen, M.;
Tanaka, W.; Wang, A. Q.; Zeng, W.; Musson, D.;
Winchel, G.; Davies, M. J.; Ramael, S.; Gottesdiener, K.
M.; Wagner, J. A. Clin. Pharmacol. Ther. 2005, 78, 675.
23. It should be noted that % inhibition as determined using
the in vitro assay under estimates the % inhibition
achieved in vivo, as compound 14a is a competitive,
rapidly reversible inhibitor and assay of plasma DPP-4
activity requires (1) dilution of plasma which results in a
dilution of the total inhibitor, and (2) presence of substrate
that competes with inhibitor for binding to the enzyme.
References and notes
1. (a) Holst, J. J. Gastroenterology 1994, 107, 1048; (b)
Orsakov, C. Diabetologia 1992, 35, 701.
2. Drucker, D. J. Diabetes 1998, 47, 159.
3. Kieffer, T. J.; Habener, J. F. Endocr. Rev. 1999, 20, 876.
4. Vilsboll, T.; Holst, J. J. Diabetologia 2004, 47, 357.
5. Kieffer, T. J.; McIntosh, C. H. S.; Pederson, T. A.
Endocrine 1995, 136, 3585.
6. Deacon, C. F.; Nauck, M. A.; Toft-Nielson, M.; Pridal,
L.; Willms, B.; Holst, J. J. Diabetes 1995, 44, 1126.