Communications
filtered and concentrated. Purification by column chromatography
(SiO2; pentane/Et2O 98:2) afforded (R)-1-phenylethanol acetate (5a)
as a colorless oil (151 mg, 92% yield, > 99% ee).
Received: July 23, 2004
Keywords: enantioselectivity · enzyme catalysis · kinetic
.
resolution · reaction mechanisms · ruthenium
[1] For examples, see: a) K. Faber, Chem. Eur. J. 2001, 7, 5005 –
5010; b) R. Noyori, M. Tokunaga, M. Kitamura, Bull. Chem. Soc.
Jpn. 1995, 68, 36 – 56; c) R. S. Ward, Tetrahedron: Asymmetry
1995, 6, 1475 – 1490.
[2] For chemoenzymatic DKR, see: a) O. Pàmies, J.-E. Bäckvall,
Trends Biotechnol. 2004, 22, 130 – 135; b) O. Pàmies, J.-E.
Bäckvall, Chem. Rev. 2003, 103, 3247 – 3262; c) F. F. Huerta,
A. B. E. Minidis, J.-E. Bäckvall, Chem. Soc. Rev. 2001, 30, 321 –
331; d) M.-J. Kim, Y. Ahn, J. Park, Curr. Opin. Chem. Biol. 2002,
13, 578 – 587; e) M. T. El Gihani, J. M. J. Williams, Curr. Opin.
Chem. Biol. 1999, 3, 11 – 15; f) R. Stürmer, Angew. Chem. 1997,
109, 1221 – 1222; Angew. Chem. Int. Ed. Engl. 1997, 36, 1173 –
1174.
[3] For a related DKR of amines, see: M. T. Reetz, K. Schimossek,
Chimia 1996, 50, 668 – 669.
[4] P. M. Dinh, J. A. Howarth, A. R. Hudnott, J. M. J. Williams,
Tetrahedron Lett. 1996, 37, 7623 – 7626.
[5] a) A. L. E. Larsson, B. A. Persson, J.-E. Bäckvall, Angew. Chem.
1997, 109, 1256 – 1258; Angew. Chem. Int. Ed. Engl. 1997, 36,
1211 – 1212; b) B. A. Persson, A. L. E. Larsson, M. Le Ray, J.-E.
Bäckvall, J. Am. Chem. Soc. 1999, 121, 1645 – 1650.
[6] N. Menasche, Y. Shvo, Organometallics 1991, 10, 3885 – 3891.
[7] a) F. F. Huerta, J.-E. Bäckvall, Org. Lett. 2001, 3, 1209 – 1212;
b) A.-B. Runmo, O. Pàmies, K. Faber, J.-E. Bäckvall, Tetrahe-
dron Lett. 2002, 43, 2983 – 2986; c) F. F. Huerta, Y. R. S. Laxmi,
J.-E. Bäckvall, Org. Lett. 2000, 2, 1037 – 1040; d) O. Pàmies, J.-E.
Bäckvall, J. Org. Chem. 2002, 67, 1261 – 1265.
Scheme 2. Proposed mechanism for the racemization.
excess of 1-phenylethanol (4a) was added to the NMR tube,
the formation of acetophenone (11) was immediately
observed.
[8] a) O. Pàmies, J.-E. Bäckvall, Adv. Synth. Catal. 2001, 343, 726 –
731; b) O. Pàmies, J.-E. Bäckvall, Adv. Synth. Catal. 2002, 344,
947 – 952.
[9] O. Pàmies, J.-E. Bäckvall, J. Org. Chem. 2001, 66, 4022 – 4025.
[10] O. Pàmies, J.-E. Bäckvall, J. Org. Chem. 2002, 67, 9006 – 9010.
[11] O. Pàmies, J.-E. Bäckvall, J. Org. Chem. 2003, 68, 4815 – 4818.
[12] a) B. A. Persson, F. F. Huerta, J.-E. Bäckvall, J. Org. Chem. 1999,
64, 5237 – 5240; b) M. Edin, J. Steinreiber, J.-E. Bäckvall, Proc.
Natl. Acad. Sci. USA 2004, 101, 5761 – 5766; c) B. Martín-
Matute, J.-E. Bäckvall, J. Org. Chem., in press.
In summary, we have developed a highly efficient DKR of
secondary alcohols at room temperature that for the first time
provides enantiopure products in high yields in very short
reaction times. Furthermore, isopropenyl acetate can be
employed as the acyl donor, which makes the purification of
the products very easy. We have also proven the intermediacy
of Ru alkoxides in this process. This mild procedure makes it
possible to use sensitive and/or less-thermostable enzymes in
future applications.
[13] M.-J. Kim, Y. K. Choi, M. Y. Choi, M. J. Kim, J. Park, J. Org.
Chem. 2001, 66, 4736 – 4738.
[14] a) H. M. Jung, J. H. Koh, M.-J. Kim, J. Park, Org. Lett. 2000, 2,
409 – 411; b) H. M. Jung, J. H. Koh, M.-J. Kim, J. Park, Org. Lett.
2000, 2, 2487 – 2490.
[15] O. Pamies, J. E. Bäckvall, Chem. Eur. J. 2001, 7, 5052 – 5058.
[16] J. H. Koh, H. M. Jung, J. Park, Tetrahedron Lett. 1998, 39, 5545 –
5548.
[17] a) J. H. Choi, Y.-H. Kim, S. H. Nam, S. T. Shin, M.-J. Kim, J.
Park, Angew. Chem. 2002, 114, 2479 – 2482; Angew. Chem. Int.
Ed. 2002, 41, 2373 – 2376; b) J. H. Choi, Y. K. Choi, Y. H. Kim,
E. S. Park, E. J. Kim, M. J. Kim, J. Park, J. Org. Chem. 2004, 69,
1972 – 1977.
Experimental Section
Complexes 3a and 3b were prepared as described in the litera-
ture.[18,25] Toluene was dried over CaH2 overnight, distilled under
argon, and stored over 4- molecular sieves. Isopropenyl acetate was
washed with saturated K2CO3, dried with CaCl2, and distilled under
argon. 1H NMR and 13C NMR spectra of acetates were in good
agreement with the data previously reported in the literature.[26]
Dynamic kinetic resolution of 1-phenylethanol (4a): A solution
of KOtBu (0.5m in THF; 100 mL, 0.05 mmol) was added to a 10-mL
Schlenk flask. The THF was carefully removed under vacuum, and
the flask was filled with argon. CALB[19] (6 mg), Na2CO3 (106 mg,
1 mmol) and Ru catalyst 3a (25 mg, 0.04 mmol) were quickly added.
The Schlenk flask was evacuated and filled with argon. Toluene
(2 mL) was added, and the mixture was stirred for 6 min.[27] 1-
Phenylethanol (4a) (120 mL, 1 mmol) was then added, and after 4 min
isopropenyl acetate (165 mL, 1.5 mmol) was added. After being
stirred for 3 h at ambient temperature, the reaction mixture was
[18] G. Csjernyik, K. Bogꢀr, J.-E. Bäckvall, Tetrahedron Lett. 2004,
45, 6799 – 6802.
[19] Immobilized and commercially available as Novozym-435.
[20] Under the same reaction conditions, (2-naphthyl)-1-ethanol
gave (2-naphthyl)-1-ethanol acetate in 100% yield but 0% ee.
[21] To avoid opening of the reaction vessel, the order of addition of
reagents was changed slightly: Toluene was added to a mixture
6538
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 6535 –6539