C. D. Cox et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2697–2702
2701
G. D. Bioorg. Med. Chem. Lett. 2005, 15, 2041; (b) Fraley,
M. E.; Garbaccio, R. M.; Arrington, K. L.; Hoffman, W.
F.; Tasber, E. S.; Coleman, P. J.; Buser, C. A.; Walsh, E.
S.; Hamilton, K.; Fernandez, C.; Schaber, M. D.; Lobell,
R. B.; Tao, W.; South, V. J.; Yan, Y.; Kuo, L. C.;
Prueksaritanont, T.; Shu, C.; Torrent, M.; Heimbrook, D.
C.; Kohl, N. E.; Huber, H. E.; Hartman, G. D. Bioorg.
Med. Chem. Lett. 2006, 16, 1775; (c) Garbaccio, R. M.;
Fraley, M. E.; Tasber, E. S.; Olson, C. M.; Hoffman, W.
F.; Arrington, K. L.; Torrent, M.; Buser, C. A.; Walsh, E.
S.; Hamilton, K.; Schaber, M. D.; Fernandez, C.; Lobell,
R. B.; Tao, W.; South, V. J.; Yan, Y.; Kuo, L. C.;
Prueksaritanont, T.; Slaughter, D. E.; Shu, C.; Heim-
brook, D. C.; Kohl, N. E.; Huber, H. E.; Hartman, G. D.
Bioorg. Med. Chem. Lett. 2006, 16, 1780.
However, we cannot exclude the possibility that pKa is
simply a surrogate marker for Pgp efflux potential that
is correlated with other physicochemical changes, such
as the increased lipophilicity revealed by logP values,
that occur due to halogenation. While more detailed
studies are required to show how the interaction of
our inhibitors with the Pgp transporter changes as the
basicity of the amine is modified,21 that does not limit
the usefulness of the relationship we have established be-
tween pKa and activity in Pgp-overexpressing cells. Sig-
nificantly, the monolayer transport data for 18
corroborates the information provided by the MDR ra-
tio, and suggest that the correlations established herein
may be of general use to those involved not only in
oncology research, but in CNS drug discovery as well.
6. Cox, C. D.; Torrent, M.; Breslin, M. J.; Mariano, B. J.;
Whitman, D. B.; Coleman, P. J.; Buser, C. A.; Walsh, E.
S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.;
South, V. J.; Kohl, N. E.; Yan, Y.; Kuo, L. C.;
Prueksaritanont, T.; Slaughter, D. E.; Li, C.; Mahan, E.;
Lu, B.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2006,
16, 3175.
In conclusion, we described how addition of a propylami-
no side chain to the 2,4-diaryl-2,5-dihydropyrrole series
provided potent, water-soluble inhibitors of KSP.
Additionally, we illustrated that the efficacy of these
compounds against a Pgp over-expressing cell line can
be dramatically increased by carefully tuning the basicity
of the amine by b-fluorination. In a forthcoming paper,
we will demonstrate how we applied these lessons learned
in balancing Pgp efflux potential with KSP potency to
identify an optimal clinical candidate for the treatment
of cancer.
7. Relative to the parental KB-3-1 cells, KB-V-1 cells,
originally derived by culturing KB-3-1 cells in the presence
of the Pgp substrate vinblastine (J. Biol. Chem. 1986, 261,
7762), express >500-fold higher levels of Pgp mRNA and
protein. The compound potency (IC50) for induction of
mitotic arrest was determined by evaluating the levels of
the mitotic marker phospho-nucleolin after a 16-h incu-
bation with the test compound in an 11-point half-log
dilution series. The ratio of IC50 obtained in KB-V-1 cells
vs. that in KB-3-1 cells is defined as the MDR ratio. For
instance, compound 3 has an IC50 of 2159 nM in the KB-
V-1 line and 4.4 nM in the KB-3-1 line. The quotient of
2159/4.4 = 490, the MDR ratio of 3. As a general
guideline, we considered compounds with MDR ratios
<10 to be of interest for their ability to enter and kill cells
that overexpress Pgp. Verapamil, a competitive inhibitor
of Pgp, restores the activity of Taxol and our KSP
inhibitors in the KB-V-1 cell line to nearly that observed in
the parental KB-3-1 line, confirming that Pgp efflux is
responsible for the observed resistance to drug-mediated
mitotic arrest.
Acknowledgments
The authors thank Dr. David Dubost for determining
the solubility of 3 and 4, Dr. Cathy Shu, Ms. Nicole
Pudvah, Ms. Bing Li, and Dr. Masayo Yamazaki for
performing the monolayer efflux assays on 4 and 18,
and Dr. Chuck Ross and Ms. Joan Murphy for high res-
olution mass spectral analyses.
References and notes
8. For reviews of Pgp’s relevance to drug discovery, see: (a)
Hochman, J. H.; Yamazaki, M.; Ohe, T.; Lin, J. H. Curr.
Drug Metab. 2002, 3, 257; (b) Lin, J. H.; Yamazaki, M.
Drug Metab. Rev. 2003, 35, 417.
1. Wood, K. W.; Cornwell, W. D.; Jackson, J. R. Curr. Opin.
Pharmacol. 2001, 370.
2. Dutcher, J. P.; Novik, Y.; O’Boyle, K.; Marcoullis, G.;
Secco, C.; Wiernik, P. H. J. Clin. Pharmacol. 2000, 40,
1079.
9. Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-
Genthe, C.; Gottesman, M. M. Nat. Rev. Drug Disc 2006,
5, 219.
3. (a) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R.
W.; Schreiber, S. L.; Mitchison, T. J. Science 1999, 286,
971; (b) Sakowicz, R.; Finer, J. T.; Beraud, C.; Crompton,
A.; Lewis, E.; Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.;
Turincio, R.; Chabala, J. C.; Gonzales, P.; Roth, S.;
Weitman, S.; Wood, K. W. Cancer Res. 2004, 64, 3276; (c)
Wood, K. W.; Bergenes, G. Annu. Rep. Med. Chem. 2004,
39, 173; (d) Bergenes, G.; Brejc, K.; Belmont, L. Curr.
Top. Med. Chem. 2005, 5, 127; (e) Jiang, C.; You, Q.; Li,
Z.; Guo, Q. Expert Opin. Ther. Patents 2006, 16, 1517, and
references therein.
10. (a) Marcus, A. I.; Peters, U.; Thomas, S. L.; Garrett, S.;
Zelnak, A.; Kapoor, T. M.; Giannakakou, P. J. Biol.
Chem. 2005, 280, 11569; (b) Peters, T.; Lindenmaier, H.;
Haefeli, W. E.; Weiss, J. Arch. Pharmacol. 2006, 372, 291;
(c) Ref. 3b.
11. (a) Salerno, M.; Przewloka, T.; Fokt, I.; Priebe, W.;
Garnier-Suillerot, A. Biochem. Pharmacol. 2002, 63, 1471;
(b) Kaiser, D.; Smiesko, M.; Kopp, S.; Chiba, P.; Ecker,
G. F. Med. Chem. 2005, 1, 431, and references therein.
12. For a series of articles relating to the use of fluorination in
drug design and development, see: Curr. Top. Med. Chem.
2006, 6.
4. (a) Miglarese, M. R.; Carlson, R. O. Expert Opin. Investig.
´
Drugs 2006, 15, 1411; (b) Sorbera, L. A.; Bolos, N.;
Serradell, N.; Bayes, M. Drugs Future 2006, 31, 778; (c)
Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S.
Nat. Rev. Cancer 2007, 7, 107.
13. For a review on the circumvention of Pgp recognition by
rational design, see: (a) Raub, T. J. Mol. Pharmaceutics
2006, 3, 3; A recent study examined the effect of modifying
the local environment of a basic amine in a cytotoxic agent
to maintain activity in an MDR cell line; see: (b)
Ruchelman, A. L.; Houghton, P. J.; Zhou, N.; Liu, A.;
Liu, L. F.; LaVoie, E. J. J. Med. Chem. 2005, 48, 792.
´
5. (a) Cox, C. D.; Breslin, M. J.; Mariano, B. J.; Coleman, P.
J.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Huber, H. E.;
Kohl, N. E.; Torrent, M.; Yan, Y.; Kuo, L. C.; Hartman,