S. Scapecchi et al. / IL FARMACO 59 (2004) 971–980
979
[3] R.M. Eglen, A. Choppin, M.P. Dillon, S. Hedge, Muscarinic ligands
and their therapeutic potential, Curr. Opin. Chem. Biol. 3 (1999)
426–432.
[4] M.F. Siddiqui, A.I. Levey, Cholinergic therapies in Alzheimer’s dis-
eases, Drug Future 24 (1999) 417–424.
[5] M.P. Caufield, N.J. Birdsall, International union of Pharmacology
XVII. Classification of muscarinic acetylcholine receptors, Pharma-
col. Rev. 50 (1998) 279–290.
[6] C.C. Felder, F.P. Bymaster, J. Ward, N. DeLapp, Therapeutic oppor-
tunities for muscarinic receptors in the central nervous system, J.
Med. Chem. 43 (2000) 4333–4353.
[7] D.P. Zlotos, W. Bender, U. Holzgabe, Muscarinic receptor agonists
and antagonists, Exp. Opin. Ther. Patents 9 (1999) 1029–1053.
[8] J. Wess, Novel insights into muscarinic acetylcholine receptor func-
tion using gene targeting technology, TiPS 24 (2003) 414–420.
[9] K.N. Bradley, Muscarinic toxins from the green mamba, Pharmacol.
Ther. 85 (2000) 87–109.
[10] E.C. Hulme, Z.-L. Lu, M. Bee, C.A.M. Curtis, J. Saldanha, The
conformational switch in muscarinic acetylcholine receptors, Life
Sci. 68 (2001) 2495–2500.
[11] L. Shi, J.A. Javitch, The binding site of aminergic G protein-coupled
receptors: the transmembrane segments and second extracellular loop,
Ann. Rev. Pharmacol. Toxicol. 42 (2002) 437–467.
[12] T. Kenakin, The classification of seven transmembrane receptors in
recombinant expression systems, Pharmacol. Rev. 48 (1996) 413–
463.
[13] J. Clader, W. Billard, H. Binch, L.Y. Chen, G. Crosby, R.A. Duffy,
J. Ford, J. Kozlowski, J. Lachowicz, S. Li, C. Liu, S. McCombie,
S. Vice, G. Zhou, W. Greenlee, Muscarinic M2 antagonists: anthranil-
amide derivatives with exceptional selectivity and in vivo activity,
Bioorg. Med. Chem. 12 (2004) 319–326.
[14] Y. Ogino, N. Ohtake, K. Kobayashi, T. Kimura, T. Fujikawa, T. Hase-
gawa, K. Noguchi, T. Mase, Muscarinic M3 receptor antagonists with
(2R)-2-((1R)-3,3-difluorocyclopentyl)-2-hydroxyphenylacetamide
structure. Part 2, Bioorg. Med. Chem. Lett. 13 (2003) 2167–2172.
[15] Y. Sagara, T. Kimura, T. Fujikawa, K. Noguchi, N. Ohtake, Identifi-
cation of novel muscarinic M-3 selective antagonists with a confor-
mationally restricted hyp-pro spacer, Bioorg. Med. Chem. Lett. 13
(2003) 57–60.
[16] T.M. Bohme, C. Kelm, K. Kreutzmann, M. Linder, T. Dingermann,
G. Dannhardt, E. Mutscler, G. Lambrecht, Structure–activity relation-
ships on dimethindene derivatives as new M2-selective muscarinic
receptor antagonists, J. Med. Chem. 46 (2003) 856–867.
[17] C.D. Boyle, J.E. Lachowicz, Orally active and selective benzylidene
ketal M2 muscarinic receptor antagonists for the treatment of Alzhe-
imer’s disease, Drug Dev. Res. 56 (2002) 310–320.
[23] J. Hu, S.Z. Wang, S. Scapecchi, F. Gualtieri, E.E. El-Fakahany, Car-
dioselective derivatives of 2,2-diphenyl-2-ethylthioacetate do not dis-
criminate between m2 and m3 muscarinic receptors expressed in
CHO cells, Pharmacology 50 (1995) 273–285.
[24] S. Scapecchi, P. Angeli, S. Dei, F. Gualtieri, G. Marucci, R. Moriconi,
F. Paparelli, M.N. Romanelli, E. Teodori, Dialkylaminoalkyl esters of
2,2-diphenyl-2-alkyltioacetic acids: a new class of potent and func-
tionally selective muscarinic antagonists, Bioorg. Med. Chem. 2
(1994) 1061–1073.
[25] S. Scapecchi, P. Angeli, A. Dei, F. Gualtieri, G. Marucci,
M.N. Romanelli, E. Teodori, N,N-diethylaminoethanol and N-methyl-
4-piperidinol esters of 2,2-diphenyl-2-ethylthioacetic acid as potent
and selective muscarinic antagonists, Pharm. Pharmacol. Lett. 2
(1993) 220–223.
[26] P. Angeli, F. Gualtieri, R. Maggio, F. Paparelli, S. Scapecchi, Affinity
profile at five cloned human muscarinic receptors (m1–m5) of a new
series of antimuscarinic drugs, Pharmaceut. Pharmacol. Lett. 3 (1993)
84–87.
[27] K.A. Jacobson, B. Fischer, A.M. van Rhee, Molecular probes for
muscarinic receptors: functionalized congeners of selective muscar-
inic antagonists, Life Sci 56 (1995) 823–830.
[28] H. Gilman, D.A. Shirley, Some derivatives of phenotiazine, J. Am.
Chem. Soc. 66 (1944) 888–892.
[29] F.P. Doyle, E.R. Stove,Alkylthioamine and quaternary salts, Beecham
Researche Laboratories Ltd., 1958, pp. GB 800963.
[30] W.P. Wetter, C. De Witt Blanton, 8-(o-Aminoalkyl)quinolines as
potential prophylactic antimalarials, J. Med. Chem. 17 (1974) 620–
624.
[31] J. Cossy, M. Guha, Intramolecular quenching of iminium ions gener-
ated by photooxidation of aminoalcohols with ketones. A new synthe-
sis of oxazines and oxazoles, Tetrahedron Lett. 35 (1994) 1715–1718.
[32] I.G. Farbenind, Method for manufacturing aminoalcohol1940, pp. DE
730237.
[33] A.J. Bitonti, Method of using triaryl-ethylene derivatives in the treat-
ment and prevention of osteoporosis, 1995 US 005691384.
[34] R.L. Hudkins, R.B. Mailman, D.L. DeHaven-Hudkins, Novel
(4-phenylpiperidinyl)-and(4-phenylpiperazinyl)alkyl-spaced esters
of 1-phenylcyclopentanecarboxylic acids as potent sigma-selective
compounds, J. Med. Chem. 37 (1994) 1964–1970.
[35] M.P. La Montagne, D. Dagli, M. Sami Khan, P. Blumbergs, Analogs
of 8-[[6-(diethylamino)hexyl]amino]-6-methoxy-4-methylquinoline
as candidate antileishmanial agents, J. Med. Chem. 23 (1980) 981–
985.
[18] Y. Sagara, T. Sagara, T. Mase, T. Kimura, T. Numazawa, T. Fujikawa,
K. Noguchi, N. Ohtake, Cyclohexylmethylpiperidinyltriphenyl-
propionamide: a selective muscarinic M3 antagonist discriminating
against the other receptor subtypes, J. Med. Chem. 45 (2002) 984–
987.
[19] T.M. Bohme, C.E. Augelli-Szafran, H. Hallak, T. Pugsley, K. Serpa,
R.D. Schwarz, Synthesis and pharmacology of benzoxazines as
highly selective antagonist at M4 muscarinic receptors, J. Med. Chem.
45 (2002) 3094–3102.
[20] O. Diouf, S. Gadeau, F. Chellé, M. Gelbcke, P. Talaga, B. Christophe,
M. Gillard, R. Massingham, M. Guyaux, A new series of M3 musca-
rinic antagonists based on the 4-amino-piperidine scaffold, Bioorg.
Med. Chem. Lett. 12 (2002) 2535–2539.
[36] R. Merchant, J.N. Wickert, C.S. Marvel, Some bromine derivatives of
pentanoic and hexanoic acids, J. Amer. Chem. Soc. 49 (1927) 1828–
1831.
[37] A.P. Phillips, The addition of amines to 4-vinylpyridine, J.Am. Chem.
Soc. 78 (1956) 4441–4443.
[38] V.I. Cohen, B.J. Gin, R.C. Reba, Facile and general synthesis of 2-,3-,
or 4-[(dialkylamino)alkyl]pyridines and piperidines, Liebigs Ann.
Chem. 7 (1993) 809–810.
[39] G. Courtois, P. Miginiac, Reaction of functional organometallic com-
pounds with gem-amino ethers and immonium salts. III. Synthesis of
o-functional tertiary amines, Bull. Soc. Chim. France 5 (1983) 148–
152.
[40] E.Y. Borisova, T.T. Vasil’eva, L.A. Lukashova, S.V. Minaeva,
E.M. Cherkasova, Synthesis of aminoamides and amino alcohols
from 1,1,1,7-tetrachloroheptane, Zhur. Organic. Khim. 11 (1975)
943–947.
[21] T.M. Bohme, C.E. Augelli-Szafran, H. Hallak, R.D. Schwarz, Ana-
logs of M4 selective synthetic muscarinic receptors antagonists: syn-
thesis, binding and pharmacokinetic properties, Med. Chem. Res. 11
(2002) 423–433.
[22] S. Scapecchi, P. Angeli, S. Dei, C. Ghelardini, F. Gualtieri,
G. Marucci, F. Paparelli, M.N. Romanelli, E. Teodori, Sar Studies on
the potent and selective muscarinic antagonist 2-ethylthio-2,2-
diphenylacetic acid N,N-diethylaminoethyl ester, Arch. Pharm. 330
(1997) 122–128.
[41] N. Leventis, M. Rawaswdeh Abdel-Monem, G. Zhang, G. Elder,
C. Sotiriou-Leventis, Tuning the redox chemistry of 4-benzoyl-n-
methylpyridinium cations through para substitution. Hammett linear
free energy relationships and the relative aptitude of the two-electron
reduced forms for h-bonding, J. Org. Chem. 67 (2002) 7501–7510.