L. K. Shubina et al. / Tetrahedron Letters 46 (2005) 559–562
561
3. Ochi, M.; Kotsuki, H.; Inooue, M.; Taniguchi, M.;
Tokoroyama, T. Chem. Lett. 1979, 831–832.
4. Capon, R. J.; Ghisalberti, E. L.; Jeffereis, P. R. Phyto-
chemistry 1981, 20, 2598–2600.
5. Cimino, G.; De Stefano, S.; Minale, L. Tetrahedron 1972,
28, 1315–1324.
6. Cimino, G.; De Stefano, S.; Minale, L. Experientia 1972,
28, 1401–1402.
7. Pouchus, Y. F.; Verbist, J. F.; Biard, J. F.; Boukef, K. J.
Nat. Prod. 1988, 51, 188–189.
The structures 1 and 2 were confirmed by synthesis from
commercially available 2,3,4–trimethoxybenzaldehyde 3
using the route shown in Scheme 1. The corresponding
trimethoxyphenol 4 was obtained by the previously de-
scribed method.18 The base-catalyzed alkylation of phe-
nol 4 with geranyl bromide led to geranylphenol 519
(18% total yield) purified by HPLC. The yield was less
than in other reported similar transformations.9,20,21
Modification of the reaction conditions did not increase
the yield, but led to the formation of O-alkylated side
products (7, 8).22
8. Lumsdon, D.; Capon, R. J.; Thomas, S. G.; Beveridge, A.
A. Aust. J. Chem. 1992, 45, 1321–1325.
9. De Rosa, S.; De Giulio, A.; Iodice, C. J. Nat. Prod. 1994,
57, 1711–1716.
10. Fusetani, N.; Sugano, M.; Matsunaga, S.; Hashimoto, K.;
Shikama, H.; Ohta, A.; Nagano, H. Experientia 1987, 43,
1233–1234.
11. Stonik, V. A.; Makarieva, T. N.; Dmitrenok, A. S. J. Nat.
Prod. 1992, 55, 1256–1260.
12. Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Debitus, S.;
Bourdy, G.; Vassa, A.; Lavayre, J. J. Nat. Prod. 1995, 58,
1444–1449.
13. Guella, G.; Mancini, I.; Pietra, F. Helv. Chim. Acta 1987,
70, 621–626.
14. Howard, B. M.; Clarkson, K.; Bernstein, R. L. Tetrahe-
dron Lett. 1979, 20, 4449–4452.
15. Targett, N. M.; Keeran, W. S. J. Nat. Prod. 1984, 47, 556–
557.
16. Faulkner, D. J. Nat. Prod. Rep. 1993, 93, 1771–1791.
17. Guella, G.; Mancini, I.; Guerriero, A.; Pietra, F. Helv.
Chim. Acta 1985, 68, 1276–1282.
A higher yield (55%) was achieved using the conditions
c, when a partial isomerization of 5 into 6 takes place
(85:15). Oxidative demethylation of geranyl phenol 5
by CAN yielded glabruquinone 1 (33%), which was
identical to the natural product (comparison of NMR
spectra and biological activities). A similar oxidative
demethylation of the mixture of 5 and 6 resulted in a
mixture of quinones 1 and 2. Synthetic 2 was separated
by HPLC from this mixture and identified with natural
glabruquinone B by comparison of their NMR spectra.
Recently, 1 was synthesized from 2,3-dimethoxybenz-
aldehyde in five steps. However, the total yield of 1
was not given.23,24
In our opinion, of special interest is the observation that
glabruquinone A is structurally more closely related to
the ubiquinones than other linear polyprenyl quinones
from sponges and ascidians. Because glabruquinone A
does not contain a methyl group in the quinoid moiety
in contrast with ubiquinones, 1 can be named desmeth-
ylubiquinone Q2. Glabruquinone A showed cancer
preventive activity in the anchorage-independent
transformation assay against mouse JB6 P+ Cl 41 cells
transformed with epidermal growth factor, inhibiting
the number of colonies with an IC50 (INCC50) of
7.3 lM. Its INCC50 were of 12.7, 17.5, and 50.5 lM
against HCT-116, MEL-28, and HT-460 human tumor
cells, respectively. At 10 lM concentration, 1 increased
the UVB-induced p53-dependent transcriptional activity
of JB6 P+ Cl 41 cells 2.5 times as much. Results of the
studies on the biological activities of 1 will be published
in detail elsewhere.
18. Matsumoto, M.; Kobayashi, H.; Hotta, Y. J. Org. Chem.
1984, 49, 4740–4741.
19. Compound 5: pale yellow oil, IR (CCl4): 3541, 2935, 1498,
1
1464 cmꢀ1; H NMR (250 MHz, CDCl3) d: 6.44 (s, 1H),
5.45 (s, 1H), 5.31 (m, 1H), 5.11 (m, 1H), 3.95 (s, 3H), 3.86
(s, 6H), 3.79 (s, 3H), 3.31 (br d, J = 7.1, 2H), 2.07 (m, 4H),
1.72 (d, J = 1.2, 3H), 1.67 (d, J = 1.2, 3H), 1.60 (d, J = 0.7,
13
3H); C NMR (CDCl3, 62.9 MHz) d: 16.12 (q, C-100),
17.66 (q, C-90), 25.66 (q, C-80), 26.73 (t, C-50), 27.90 (t, C-
10), 39.75 (t, C-40), 56.62 (q, OMe), 60.89 (q, OMe), 61.16
(q, OMe), 108.30 (d, C-6), 121.61 (s, C-5), 121.98 (d, C-20
or C-60), 124.20 (d, C-60 or C-20), 128.89 (s, C-4), 131.41 (s,
C-70), 136.59 (s, C-1), 140.04 (s, C-30), 140.81 (s, C-2 or C-
3), 146.14 (s, C-3 or C-2).
20. Buozbouz, S.; Kirschleger, B. Synthesis 1994, 714–718.
21. Manners, G. D.; Wong, R. J. J. Chem. Soc., Perkin Trans.
1 1981, 1849–1854.
22. Compound 7: yellow oil, IR (CDCl3) 2937, 1491,
;
1435 cmꢀ1 1H NMR (250 MHz, CDCl3) d: 6.61 (d,
J = 9.0), 6.55 (d, J = 9.0, 1H), 5.50 (m, 1H), 5.09 (m,
1H), 4.53 (d, J = 6.6, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 3.82
(s, 3H), 2.08 (m, 4H), 1.60 (d, J = 1.0, 3H), 1.68 (d, J = 1.2,
3H), 1.71 (d, J = 1.2, 3H); 13C NMR (62.9 MHz, CDCl3)
d: 16.62 (q, C-100), 17.71 (q, C-90), 25.69 (q, C-80), 26.33 (t,
C-50), 39.54 (t, C-40), 56.41 (q, OMe), 61.14 (q, OMe),
61.22 (q, OMe), 66.66 (t, C-10), 106.45 (d, C-5 or C-6),
109.05 (d, C-6 or C-5), 120.11 (d, C-20 or C-60), 123.88 (d,
C-60 or C-20), 131.74 (s, C-70), 140.59 (s, C-30), 143.20 (s,
C-1 or C-2, or C-3, or C-4), 144.21 (s, C-2, or C-1, or C-3,
or C-4), 146.94 (s, C-3, or C-1, or C-2 or C-4), 147.94 (s,
C-4, or C-1, or C-2, or C-3). Compound 8: yellow oil, IR
Acknowledgements
We are grateful to B. B. Grebnev for identification of the
ascidian. The research described in this publication was
made possible in part by Grant NS-725.2003.4 of RFBR
and a Grant from the Program ꢀMolecular and cell
biology of RASꢁ.
(CDCl3) 2935, 1489, 1459, 1434, 1415 cmꢀ1 1H NMR
;
References and notes
(250 MHz, CDCl3) d: 6.45 (s, 1H), 5.55 (m, 1H), 5.28 (m,
1H), 5.10 (m, 2H), 4.46 (d, J = 7.1, 2H), 3.93 (s, 3H), 3.87
(s, 3H), 3.81 (s, 3H), 3.33 (d, J = 7.3, 2H), 2.08 (m, 8H),
1.72 (d, J = 1.2, 3H), 1.70 (d, J = 1.2, 3H), 1.69 (d, J = 1.0,
3H), 1.67 (d, J = 1.0, 3H), 1.61 (d, J = 0.7, 3H), 1.60 (d,
J = 0.7, 3H).
1. Thomson, R. H. Naturally Occurring Quinones; Academic:
London, 1971; pp 93–197.
2. Pennock, J. F. In Terpenoids in Plants; Pridham, J. B.,
Ed.; Academic: London, 1967; pp 129–146.