Page 11 of 13
Journal of the American Chemical Society
6.
4423.
7.
Koo, K.; Hillhouse, G. L., Organometallics 1995, 14 (9), 4421-
Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I., J. Am. Chem.
energy, and the reductive elimination reaction from this complex is
1
2
3
4
5
6
7
8
faster and higher yielding than that from the analogous complex
containing a rigid linker. Computations suggest that the rigid, aryl
backbones in ortho-anisyl phosphines do not allow for dissociation
of the ether to form the three-coordinate isomer. We suggest that
the effects of weak chelation on the mechanism of reductive elimi-
nation could be elements of design for catalysts that react by reduc-
tive elimination to form alkyl–nitrogen bonds.
Soc. 2007, 129 (34), 10382-10393.
8.
Chem. Soc. 2012, 134 (15), 6571-6574.
9.
Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G., J. Am.
Lin, B. L.; Clough, C. R.; Hillhouse, G. L., J. Am. Chem. Soc.
2002, 124 (12), 2890-2891.
10.
931.
11.
Chem. 2001, 66 (24), 8127-34.
Catellani, M.; Del Rio, A., Russ. Chem. Bull. 1998, 47 (5), 928-
The trends revealed by the current work suggest strategies to in-
crease the rate of reductive elimination and to prevent unproductive
decomposition pathways. Specifically, we have shown that coordi-
nation by P,O bidentate ligands can stabilize reactive Pd(II) anilido
intermediates without significantly decreasing the yields from re-
ductive elimination. The square planar structures of these com-
plexes are expected to lead to higher barriers to unproductive de-
composition pathways, such as b-hydride elimination. Further-
more, chelation should disfavor decomposition pathways involving
phosphine dissociation or formation of bimetallic, anilide-bridged
complexes. Therefore, we expect that ligand structures like those
in Scheme 5 and Scheme 6 will enable an expansion of the scope
of alkyl and amido groups that undergo reductive elimination.
Lautens, M.; Paquin, J. F.; Piguel, S.; Dahlmann, M., J. Org.
9
12.
Pan, J.; Su, M.; Buchwald, S. L., Angew. Chem. Int. Ed. 2011,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
50 (37), 8647-8651.
13.
Int. Ed. 2010, 49 (4), 793-796.
14.
Am. Chem. Soc. 2012, 134 (37), 15281-15284.
15.
6115-6128.
16.
Organometallics 2003, 22 (13), 2775-2789.
Marquard, S. L.; Rosenfeld, D. C.; Hartwig, J. F., Angew. Chem.
Hanley, P. S.; Marquard, S. L.; Cundari, T. R.; Hartwig, J. F., J.
Low, J. J.; Goddard, W. A., J. Am. Chem. Soc. 1986, 108 (20),
Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F.,
17.
Attempts to isolate a crystalline sample of complex 6a were
unsuccessful.
18.
19.
Tolman, C. A., Chem. Rev. 1977, 77 (3), 313-348.
The substituent contributions to the Tolman electronic
ASSOCIATED CONTENT
Supporting Information
paramater are 0, 4.3, and, 0.1 for t-Bu, Ph, and Cy, respectively.
20. DiCosimo, R.; Whitesides, G. M., J. Am. Chem. Soc. 1982, 104
(13), 3601-3607.
Experimental details, NMR spectra, crystallographic data, compu-
tational details, and optimized coordinates. This material is availa-
21.
Tatsumi, K.; Nakamura, A.; Komiya, S.; Yamamoto, A.;
Yamamoto, T., J. Am. Chem. Soc. 1984, 106 (26), 8181-8188.
22.
23.
24.
Hartwig, J. F., Inorg. Chem. 2007, 46 (6), 1936-1947.
Gusev, D. G., Organometallics 2009, 28 (22), 6458-6461.
Kelly Iii, R. A.; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens,
AUTHOR INFORMATION
E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P.,
Organometallics 2008, 27 (2), 202-210.
25.
BrC5H3N))]Pd(2-CH3norbornyl)(Cl) to test whether decreasing the basicity
of the pyridine donor would enable reductive elimination to occur.
However, only trace formation of 3i was detected in reactions of this
complex (see the SI for details).
Corresponding Authors
We also synthesized the complex [Ad2PCH2(2-(5-
Present Addresses
P.S.H. Core Research & Development, The Dow Chemical Com-
pany, 1776 Building, Midland, Michigan 48674, United States.
26.
Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B.
Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scal-mani, V.
Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr.,
J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin,
V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M.
Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli,
J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B.
Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford
CT, 2013.
27.
28.
5555-5565.
29.
(12), 6026-6033.
30.
Chem. 1992, 70 (2), 612-630.
31.
B 2009, 113 (18), 6378-6396.
32.
425.
33.
Organ, M. G., Chem. Eur. J. 2012, 18 (1), 145-151.
34. Klinkenberg, J. L.; Hartwig, J. F., J. Am. Chem. Soc. 2010, 132
(34), 11830-11833.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
The authors gratefully acknowledge funding from the National Sci-
ence Foundation Center for Enabling New Technologies through
Catalysis (Grant CHE-1205189). X-ray diffraction crystallography
was performed by Dr. Antonio DiPasquale at the UC Berkeley
CheXRay facility (NIH S10- RR027172). We thank Dr. Hasan Ce-
lik at the UC Berkeley NMR Facility for his assistance with DOSY
Becke, A. D., J. Chem. Phys. 1993, 98 (7), 5648-5652.
Cundari, T. R.; Stevens, W. J., J. Chem. Phys. 1993, 98 (7),
1
and H-31P HMBC NMR spectroscopy experiments. T.R.C. and
Q.J. also acknowledge the National Science Foundation for their
support of the UNT Chemistry CASCaM high performance com-
puting facility through grant CHE-1531468.
Stevens, W. J.; Basch, H.; Krauss, M., J. Chem. Phys. 1984, 81
Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G., Can. J.
REFERENCES
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem.
1.
Driver, M. S.; Hartwig, J. F., J. Am. Chem. Soc. 1997, 119 (35),
Yamashita, M.; Hartwig, J. F., J. Am. Chem. Soc. 2004, 126 (17),
Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.;
Cundari, T. R.; Deng, J., J. Phys. Org. Chem. 2005, 18 (5), 417-
8232-8245.
2.
5344-5345.
3.
Hoi, K. H.; Çalimsiz, S.; Froese, R. D. J.; Hopkinson, A. C.;
Zimmerman, P. M., J. Am. Chem. Soc. 2016, 138 (18), 6049-6060.
4. Pérez-Temprano, M. H.; Racowski, J. M.; Kampf, J. W.;
Sanford, M. S., J. Am. Chem. Soc. 2014, 136 (11), 4097-4100.
5. Camasso, N. M.; Canty, A. J.; Ariafard, A.; Sanford, M. S.,
Organometallics 2017, 36 (22), 4382-4393.
35.
36.
Bondi, A., J. Phys. Chem. 1964, 68 (3), 441-451.
Attempts to locate a transition state structure in which the Pd-O
distance is within the summ of the VdW radii were unsucessful.
11
ACS Paragon Plus Environment